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Introduction

As we have seen, the central limit theorem can be used to
derive the (approximate) sampling distribution of the average

In the previous lecture, we saw how we could use that fact to
calculate the probability that the sample average will be over
a certain value, or to find an interval that has a 95%
probability of containing the sample average

In this lecture, we will see how we can use the same line of
thinking to develop hypothesis tests and confidence intervals
for one-sample categorical data

We will then compare these results to the exact hypothesis
tests and confidence intervals that we obtained earlier based
on the binomial distribution
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Transmission disequilibrium tests

A common question in genetic epidemiology is whether or not
a gene is associated with a certain trait

One way of testing for this association empirically is called the
transmission disequilibrium test

The idea is to find (i.e., sample) parent-child pairs in which
the child has the trait of interest and the parent is
heterozygous for the gene of interest (i.e., has one copy of
each version of the gene)

As we have discussed, the parent is equally likely to pass on
either copy, so if there is no link between the trait and the
gene, we would expect 50% of the children to have version
“A” and the other 50% to have version “B”
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Transmission disequilibrium tests (cont’d)

However, we have systematically sampled only children with
the trait – any children without the trait are not included in
the study

If version “A” causes a child to be more likely to develop the
trait of interest, we will find a higher proportion of version
“A” in the children in our sample than version “B”

In other words, if the two are associated, the “transmission”
of the gene is distorted away from “equilibrium” (50/50
balance), hence the name of the test
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TDTs and the binomial distribution

Under the null hypothesis that the gene and trait are
independent, the number of children in the sample who
received the “A” version from their heterozygous parent will
follow a binomial distribution with P (A) = 50%

In statistical shorthand, we would write H0 : p0 = 0.5, where
p0 refers to the hypothesized value of the parameter p under
the null

So the number of children exactly follows a binomial
distribution, but from the central limit theorem, we also know
that the sample proportion (because proportions are averages
of 0-1 outcomes) approximately follows a normal distribution,
with expected value 0.5 and standard error

√
0.5(0.5)/n,

where n is the number of parent-child pairs

Patrick Breheny Introduction to Biostatistics (BIOS 4120) 5/20



Hypothesis testing
Confidence intervals

Summary

Diabetes study

In a 1989 study reported in the journal Genetic epidemiology,
data was collected for 124 parent-child pairs in which the
offspring had Type I diabetes and the parent was heterozygous
for 5’FP (a flanking polymorphism adjacent to the insulin
gene on chromosome 11)

Among the children, 78 received the “class 1” version of 5’FP
from their parent, while the other 46 did not

In other words, p̂ = 78/124 = 62.9% of the children received
the class 1 version; is this far enough from 50% to conclude
that a departure from equilibrium is present?
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Procedure for a z-test

To test the hypothesis, we need to calculate the probability of
seeing a sample proportion as far or farther from 50% than
62.9% is

We can use our procedure from the previous lecture:

#1 Calculate the standard error: SE =
√

p0(1− p0)/n
#2 Calculate z = (p̂− p0)/SE
#3 Draw a normal curve and shade the area outside ±z
#4 Calculate the area under the normal curve outside ±z
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Terminology

Hypothesis tests revolve around calculating some statistic
from the data that, under the null hypothesis, you know the
distribution of

This statistic is called a test statistic, since it’s a statistic that
the test revolves around

In this case, our test statistic is z: we can calculate it from
the data, and under the null hypothesis, it follows a normal
distribution

Tests are often named after their test statistics: the testing
procedure we just described is called a z-test
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The z-test for the diabetes study

For the diabetes study, p0 = 0.5 and n = 124

Therefore,

SE =

√
p0(1− p0)

n

=

√
0.5(0.5)

124

= .045
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The z-test for the diabetes study (cont’d)

The test statistic is therefore

z =
p̂− p0
SE

=
.629− .5

.045
= 2.87

The p-value of this test is therefore 2(.002) = .004

In other words, if the null hypothesis were true, there would
only be about a 0.4% chance of seeing so many children in our
sample with the “class 1” version of the gene; this represents
very strong evidence that the gene is associated with diabetes
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Accuracy of the approximation

We could also carry out the exact test:

> binom.test(78,124)

p-value = 0.005161

In this case, the two answers are virtually identical (0.004 vs.
0.005) because for n = 124 and p0 = 0.5, the binomial
distribution looks almost exactly like the normal disribution:

p̂

D
en

si
ty

0.35 0.4 0.45 0.5 0.55 0.6 0.65
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Approximate confidence intervals for one-sample categorical data
Accuracy of the normal approximation

Introduction: confidence intervals

Similarly, the procedure for finding an interval with a 95%
probability of containing the sample mean is closely related to
constructing 95% confidence intervals:

●

●

●

●

●

In other words, if the truth ±1.96 SE has a 95% probability of
containing the sample mean, then the sample mean ±1.96 SE
has a 95% probability of containing the truth
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Approximate confidence intervals for one-sample categorical data
Accuracy of the normal approximation

The standard error

The major conceptual difference from the hypothesis test is
that we don’t know p, and we need p in order to calculate the
standard error.

The simplest and most natural thing to do (and what we will
do in this class) is to use the observed value, p̂, in calculating
the standard error:

SE =

√
p̂(1− p̂)

n

However, as we will see, this approximation does not always
work so well, and it is perhaps worth being aware of the fact
that other, better approximations have also been developed
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Approximate confidence intervals for one-sample categorical data
Accuracy of the normal approximation

Procedure for finding confidence intervals

Writing all this out as a procedure, the central limit theorem tells
us that we can create x% confidence intervals by:

#1 Calculate the standard error: SE =
√

p̂(1− p̂)/n

#2 Determine the values of the normal distribution that contain
the middle x% of the data; denote these values ±zx%

#3 Calculate the confidence interval:

(p̂− zx%SE, p̂+ zx%SE)
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Approximate confidence intervals for one-sample categorical data
Accuracy of the normal approximation

Example: Survival of premature infants

Let’s return to our example from a few weeks ago involving
the survival rates of premature babies

Recall that 31/39 babies who were born at 25 weeks gestation
survived

The estimated standard error is therefore

SE =

√
.795(1− .795)

39

= 0.0647
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Approximate confidence intervals for one-sample categorical data
Accuracy of the normal approximation

Example: Survival of premature infants (cont’d)

Suppose we want a 95% confidence interval

As we noted earlier, z95% = 1.96

Thus, our confidence interval is:

(79.5− 1.96(6.47), 79.5 + 1.96(6.47)) = (66.8%, 92.2%)

Recall that our exact answer from the binomial distribution
was (63.5%,90.7%)
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Approximate confidence intervals for one-sample categorical data
Accuracy of the normal approximation

Accuracy of the normal approximation

Thus, we see that the central limit theorem approach works
reasonably well here

The real sampling distribution is binomial, but when n is
reasonably big and p isn’t close to 0 or 1, the binomial
distribution looks a lot like the normal distribution, so the
normal approximation works pretty well

Other times, the normal approximation doesn’t work very well:
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Approximate confidence intervals for one-sample categorical data
Accuracy of the normal approximation

Example: Survival of premature infants, part II

Recall that the Johns Hopkins researchers also observed 0/29
infants born at 22 weeks gestation to survive

What happens when we try to apply our approximate
approach to find a confidence interval for the true percentage
of babies who would survive in the population?

SE =
√
p̂(1− p̂)/n = 0, so our confidence interval is (0,0)

This is an awful confidence interval, not even close to the
exact one we calculated earlier: (0%, 12%)
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Exact vs. approximate intervals

When n is large and p isn’t close to 0 or 1, it doesn’t really
matter whether you choose the approximate or the exact
approach

The advantage of the approximate approach is that it’s easy
to do by hand

In comparison, finding exact confidence intervals by hand is
quite time-consuming

However, we live in an era with computers, which do the work
of finding confidence intervals instantly, so in the real world
there is no reason to settle for the approximate answer

Patrick Breheny Introduction to Biostatistics (BIOS 4120) 19/20



Hypothesis testing
Confidence intervals

Summary

Summary

Know how to calculate by hand (with the aid of a table):

Approximate p-values for one-sample categorical data based on
the central limit theorem
Approximate confidence intervals for one-sample categorical
data based on the central limit theorem

Although these are not really necessary in the real world
(because computers can calculate exact answers), they are an
instructive place to start, as many of the statistical methods
we will use in the rest of the course will rely on central limit
theorem approximations and follow very similar procedures
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