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Kerrich's experiment

@ A South African mathematician named John Kerrich was
visiting Copenhagen in 1940 when Germany invaded Denmark

@ Kerrich spent the next five years in an interment camp

@ To pass the time, he carried out a series of experiments in
probability theory

@ One of them involved flipping a coin 10,000 times
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The law of averages

@ We know that a coin lands heads with probability 50%

@ Thus, after many tosses, the law of averages says that the
number of heads should be about the same as the number of
tails . ..

@ ...or does it?
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Kerrich's results

Number of Number of Heads -

tosses (n) heads 0.5-Tosses
10 4 -1

100 44 -6
500 255 5
1,000 502 2
2,000 1,013 13
3,000 1,510 10
4,000 2,029 29
5,000 2,533 33
6,000 3,009 9
7,000 3,516 16
8,000 4,034 34
9,000 4,538 38
10,000 5,067 67
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Instead of getting closer, the numbers of heads and tails are
getting farther apart
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Where's the law of averages?

@ So where's the law of averages?

@ Well, the law of averages does not say that as n increases the
number of heads will be close to the number of tails

@ What it says instead is that, as n increases, the average
number of heads will get closer and closer to the long-run
average (in this case, 0.5)

@ The technical term for this is that the sample average, which
is an estimate, converges to the population mean, which is a
parameter
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Trends in Kerrich's experiment

@ There are three very important trends going on in this
experiment

o We'll get to those three trends in a few minutes, but first, |
want to introduce two additional, important facts about the
binomial distribution: its mean (expected value) and standard
deviation
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The expected value of the binomial distribution

@ Recall that the probability of an event is the long-run percent
of time it occurs

@ An analogous idea exists for random variables: if we were to
measure a random variable over and over again an infinite
number of times, the average of those measurements would
be the expected value of the random variable

@ For example, the expected value of a random variable X
following a binomial distribution with n trials and probability
pis np:

E(X)=np

@ This makes sense; if you flip a coin 10 times, you can expect 5
heads
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The standard deviation of the binomial distribution

@ Of course, you won't always get 5 heads
@ Because of variability, we are also interested in the standard
deviation of random variables
@ For the binomial distribution, the standard deviation is
SD(X) = +/np(1 —p)
@ To continue our example of flipping a coin 10 times, here the

SD is 4/10(0.5)(0.5) = 1.58, so we can expect the number of
heads to be 5 £ 3 about 95% of the time (by the 95% rule of

thumb)

@ Note that the SD is highest when p = 0.5 and gets smaller as
p is close to 0 or 1 — this makes sense, as if p is close to 0 or
1, the event is more predictable and less variable
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Trends in Kerrich's experiment

@ As | said a few minutes ago, there are three very important
trends going on in this experiment

@ These trends can be observed visually from the computer
simulations or proven via the binomial distribution

o We'll work with both approaches so that you can get a sense
of how they both work and how they reinforce each other
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Trend #1: The expected value of the average

@ The expected value of the binomial distribution is np; what
about the expected value of its mean?
@ The mean (i.e., the sample proportion) is

. X
pP=—

so its expected value is

E(p)

=P
@ In other words, for any sample size, the expected value of the

sample proportion is equal to the true proportion (i.e., it is
not biased)
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Trend #2: The standard error

The standard error of the mean

o Likewise, but the standard deviation of the binomial
distribution is y/np(1 — p), but what about the SD of the

mean?
@ As before,
. SD(X
sp(p) = 22UX)
n

_ Vnp(1—p)

n
_ [p(1—p)

n
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Trend #1: The expected value of the average
Trend #2: The standard error

Trend #3: The distribution of the average

Standard errors

@ Note that, as n goes up, the variability of the # of heads goes
up, but the variability of the average goes down — just as we
saw in our simulation

@ Indeed, the variability goes to 0 as n gets larger and larger —
this is the law of averages

@ The standard deviation of the average is given a special name
in statistics to distinguish it from the sample standard
deviation of the data

@ The standard deviation of the average is called the standard
error

@ The term standard error refers to the variability of any
estimate, to distinguish it from the variability of individual
tosses or people
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Trend #1: The expected value of the average
Trend #2: The standard error

Trend #3: The distribution of the average

The square root law

@ The relationship between the variability of an individual (toss)
and the variability of the average (of a large number of tosses)
is a very important relationship, sometimes called the square
root law:

where SE is the standard error of the mean and SD is the
standard deviation of an individual (toss)

@ We saw that this is true for tosses of a coin, but it is in fact
true for all averages

@ Once again, we see this phenomenon visually in our simulation
results
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The distribution of the mean

Finally, let's look at the distribution of the mean by creating
histograms of the mean in our simulation
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The central limit theorem

@ In summary, there are three very important phenomena going
on here concerning the sampling distribution of the sample
average:

#1 The expected value is always equal to the population average

#2 The standard error is always equal to the population standard
deviation divided by the square root of n

#3 As n gets larger, the sampling distribution looks more and
more like the normal distribution

@ Furthermore, these three properties of the sampling
distribution of the sample average hold for any distribution —
not just the binomial
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The central limit theorem (cont'd)

@ This result is called the central limit theorem, and it is one of

the most important, remarkable, and powerful results in all of
statistics

@ In the real world, we rarely know the distribution of our data

@ But the central limit theorem says: we don’t have to
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The central limit theorem (cont'd)

@ Furthermore, as we have seen, knowing the mean and
standard deviation of a distribution that is approximately
normal allows us to calculate anything we wish to know with
tremendous accuracy — and the sampling distribution of the
mean is always approximately normal

@ The only caveats:

o Observations must be independently drawn from and
representative of the population

o The central limit theorem applies to the sampling distribution
of the mean — not necessarily to the sampling distribution of
other statistics

e How large does n have to be before the distribution becomes
close enough in shape to the normal distribution?
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How large does n have to be?

@ Rules of thumb are frequently recommended that n = 20 or
n = 30 is “large enough” to be sure that the central limit
theorem is working

@ There is some truth to such rules, but in reality, whether n is
large enough for the central limit theorem to provide an
accurate approximation to the true sampling distribution
depends on how close to normal the population distribution is

@ If the original distribution is close to normal, n = 2 might be
enough

o If the underlying distribution is highly skewed or strange in
some other way, n = 50 might not be enough
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Example #1

Population n=10
0.20 4
0.5
0.15 4 0.4
2 2 034
2 0.10 | 2
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0.2
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Example #2

Now imagine an urn containing the numbers 1, 2, and 9:

n=20

08

06

04

02
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Density

Sample mean

n=50

0.8
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0.4
0.2

Density

Sample mean
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Example #2 (cont'd)

n=100
1.0 4
0.8 —
2
o 0.6
j7
o
0.4 —
0.2
0.0 -
T T T 1
3 4 5 6
Sample mean
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Example #3

@ Weight tends to be skewed to the right (far more people are
overweight than underweight)

@ Let's perform an experiment in which the NHANES sample of
adult men is the population

@ | am going to randomly draw twenty-person samples from this
population (i.e. | am re-sampling the original sample)
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Example #3 (cont'd)

n=20
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Why do so many things follow normal distributions?

@ We can see now why the normal distribution comes up so
often in the real world: any time a phenomenon has many
contributing factors, and what we see is the average effect of
all those factors, the quantity will follow a normal distribution

o For example, there is no one cause of height — thousands of
genetic and environmental factors make small contributions to
a person’s adult height, and as a result, height is normally
distributed

@ On the other hand, things like eye color, cystic fibrosis, broken
bones, and polio have a small number of (or a single)
contributing factors, and do not follow a normal distribution
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Summary

@ Central limit theorem:
e The expected value of the average is always equal to the
population average
o SE=SD/\/n
o As n gets larger, the sampling distribution looks more and
more like the normal distribution
@ Generally speaking, the sampling distribution looks pretty
normal by about n = 20, but this could happen faster or
slower depending on the population and how skewed it is
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