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Kerrich’s experiment

A South African mathematician named John Kerrich was
visiting Copenhagen in 1940 when Germany invaded Denmark

Kerrich spent the next five years in an interment camp

To pass the time, he carried out a series of experiments in
probability theory

One of them involved flipping a coin 10,000 times
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The law of averages

We know that a coin lands heads with probability 50%

Thus, after many tosses, the law of averages says that the
number of heads should be about the same as the number of
tails . . .

. . . or does it?
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Kerrich’s results

Number of Number of Heads -
tosses (n) heads 0.5·Tosses

10 4 -1
100 44 -6
500 255 5

1,000 502 2
2,000 1,013 13
3,000 1,510 10
4,000 2,029 29
5,000 2,533 33
6,000 3,009 9
7,000 3,516 16
8,000 4,034 34
9,000 4,538 38

10,000 5,067 67
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Kerrich’s results plotted
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Instead of getting closer, the numbers of heads and tails are
getting farther apart
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Repeating the experiment 50 times
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This is not a fluke – instead, it occurs systematically and
consistently in repeated simulated experiments
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Where’s the law of averages?

So where’s the law of averages?

Well, the law of averages does not say that as n increases the
number of heads will be close to the number of tails

What it says instead is that, as n increases, the average
number of heads will get closer and closer to the long-run
average (in this case, 0.5)

The technical term for this is that the sample average, which
is an estimate, converges to the population mean, which is a
parameter
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Repeating the experiment 50 times, Part II
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Trends in Kerrich’s experiment

There are three very important trends going on in this
experiment

We’ll get to those three trends in a few minutes, but first, I
want to introduce two additional, important facts about the
binomial distribution: its mean (expected value) and standard
deviation
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The expected value of the binomial distribution

Recall that the probability of an event is the long-run percent
of time it occurs

An analogous idea exists for random variables: if we were to
measure a random variable over and over again an infinite
number of times, the average of those measurements would
be the expected value of the random variable

For example, the expected value of a random variable X
following a binomial distribution with n trials and probability
p is np:

E(X) = np

This makes sense; if you flip a coin 10 times, you can expect 5
heads

Patrick Breheny Introduction to Biostatistics (BIOS 4120) 10/28



Introduction
The three trends

The central limit theorem
Summary

The law of averages
Mean and SD of the binomial distribution

The standard deviation of the binomial distribution

Of course, you won’t always get 5 heads

Because of variability, we are also interested in the standard
deviation of random variables

For the binomial distribution, the standard deviation is

SD(X) =
√

np(1− p)

To continue our example of flipping a coin 10 times, here the
SD is

√
10(0.5)(0.5) = 1.58, so we can expect the number of

heads to be 5± 3 about 95% of the time (by the 95% rule of
thumb)

Note that the SD is highest when p = 0.5 and gets smaller as
p is close to 0 or 1 – this makes sense, as if p is close to 0 or
1, the event is more predictable and less variable
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Trends in Kerrich’s experiment

As I said a few minutes ago, there are three very important
trends going on in this experiment

These trends can be observed visually from the computer
simulations or proven via the binomial distribution

We’ll work with both approaches so that you can get a sense
of how they both work and how they reinforce each other
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The expected value of the mean

The expected value of the binomial distribution is np; what
about the expected value of its mean?
The mean (i.e., the sample proportion) is

p̂ =
X

n
,

so its expected value is

E(p̂) =
E(X)

n

=
np

n
= p

In other words, for any sample size, the expected value of the
sample proportion is equal to the true proportion (i.e., it is
not biased)
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The standard error of the mean

Likewise, but the standard deviation of the binomial
distribution is

√
np(1− p), but what about the SD of the

mean?

As before,

SD(p̂) =
SD(X)

n

=

√
np(1− p)

n

=

√
p(1− p)

n
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Standard errors

Note that, as n goes up, the variability of the # of heads goes
up, but the variability of the average goes down – just as we
saw in our simulation

Indeed, the variability goes to 0 as n gets larger and larger –
this is the law of averages

The standard deviation of the average is given a special name
in statistics to distinguish it from the sample standard
deviation of the data

The standard deviation of the average is called the standard
error

The term standard error refers to the variability of any
estimate, to distinguish it from the variability of individual
tosses or people
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The square root law

The relationship between the variability of an individual (toss)
and the variability of the average (of a large number of tosses)
is a very important relationship, sometimes called the square
root law:

SE =
SD√
n
,

where SE is the standard error of the mean and SD is the
standard deviation of an individual (toss)

We saw that this is true for tosses of a coin, but it is in fact
true for all averages

Once again, we see this phenomenon visually in our simulation
results
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The distribution of the mean

Finally, let’s look at the distribution of the mean by creating
histograms of the mean in our simulation
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The central limit theorem

In summary, there are three very important phenomena going
on here concerning the sampling distribution of the sample
average:

#1 The expected value is always equal to the population average
#2 The standard error is always equal to the population standard

deviation divided by the square root of n
#3 As n gets larger, the sampling distribution looks more and

more like the normal distribution

Furthermore, these three properties of the sampling
distribution of the sample average hold for any distribution –
not just the binomial
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The central limit theorem (cont’d)

This result is called the central limit theorem, and it is one of
the most important, remarkable, and powerful results in all of
statistics

In the real world, we rarely know the distribution of our data

But the central limit theorem says: we don’t have to
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The central limit theorem (cont’d)

Furthermore, as we have seen, knowing the mean and
standard deviation of a distribution that is approximately
normal allows us to calculate anything we wish to know with
tremendous accuracy – and the sampling distribution of the
mean is always approximately normal

The only caveats:

Observations must be independently drawn from and
representative of the population
The central limit theorem applies to the sampling distribution
of the mean – not necessarily to the sampling distribution of
other statistics
How large does n have to be before the distribution becomes
close enough in shape to the normal distribution?
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How large does n have to be?

Rules of thumb are frequently recommended that n = 20 or
n = 30 is “large enough” to be sure that the central limit
theorem is working

There is some truth to such rules, but in reality, whether n is
large enough for the central limit theorem to provide an
accurate approximation to the true sampling distribution
depends on how close to normal the population distribution is

If the original distribution is close to normal, n = 2 might be
enough

If the underlying distribution is highly skewed or strange in
some other way, n = 50 might not be enough
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Example #1
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Example #2
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Example #2 (cont’d)
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Example #3

Weight tends to be skewed to the right (far more people are
overweight than underweight)

Let’s perform an experiment in which the NHANES sample of
adult men is the population

I am going to randomly draw twenty-person samples from this
population (i.e. I am re-sampling the original sample)
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Example #3 (cont’d)
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Why do so many things follow normal distributions?

We can see now why the normal distribution comes up so
often in the real world: any time a phenomenon has many
contributing factors, and what we see is the average effect of
all those factors, the quantity will follow a normal distribution

For example, there is no one cause of height – thousands of
genetic and environmental factors make small contributions to
a person’s adult height, and as a result, height is normally
distributed

On the other hand, things like eye color, cystic fibrosis, broken
bones, and polio have a small number of (or a single)
contributing factors, and do not follow a normal distribution
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Summary

Central limit theorem:

The expected value of the average is always equal to the
population average
SE = SD/

√
n

As n gets larger, the sampling distribution looks more and
more like the normal distribution

Generally speaking, the sampling distribution looks pretty
normal by about n = 20, but this could happen faster or
slower depending on the population and how skewed it is
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