

# The Central Limit Theorem

Patrick Breheny

March 5

# Kerrich's experiment

- A South African mathematician named John Kerrich was visiting Copenhagen in 1940 when Germany invaded Denmark
- Kerrich spent the next five years in an interment camp
- To pass the time, he carried out a series of experiments in probability theory
- One of them involved flipping a coin 10,000 times

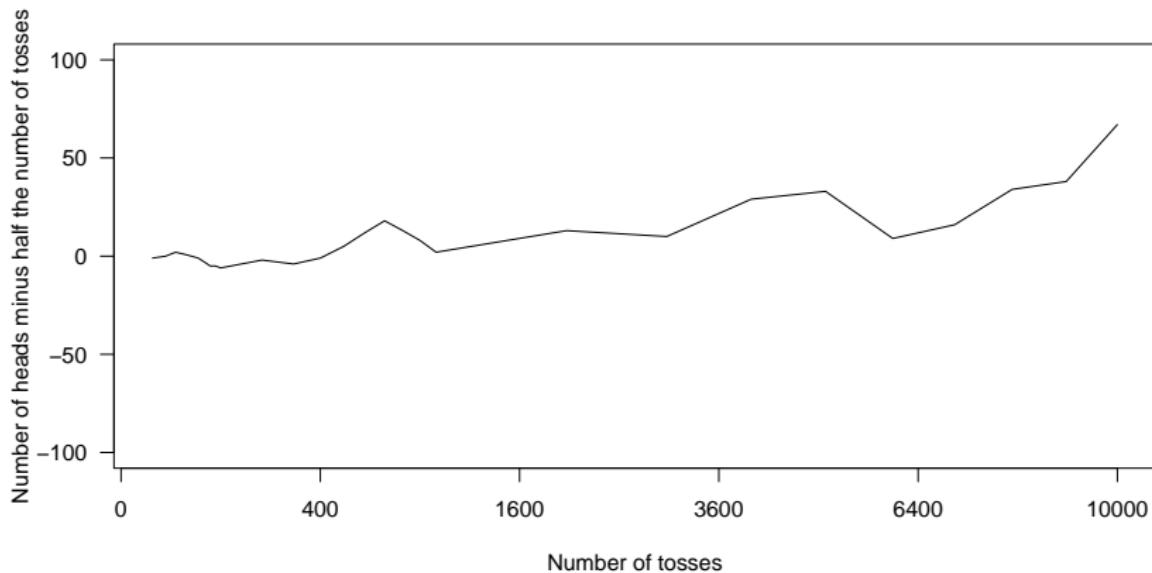
# The law of averages

- We know that a coin lands heads with probability 50%
- Thus, after many tosses, the law of averages says that the number of heads should be about the same as the number of tails ...
- ... or does it?

# Kerrich's results

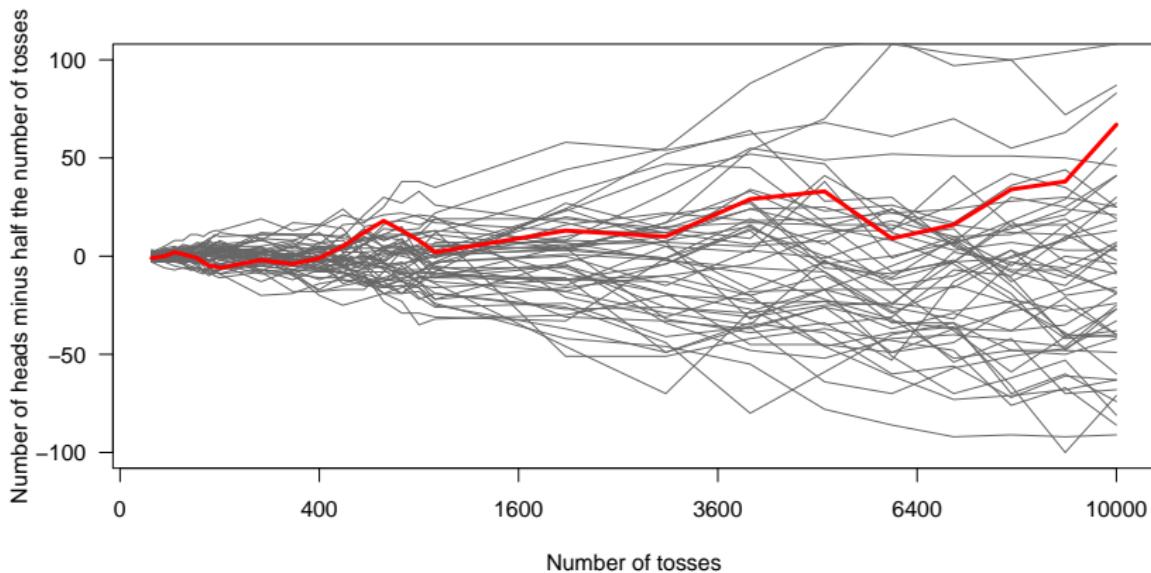
| Number of<br>tosses ( $n$ ) | Number of<br>heads | Heads -<br>$0.5 \cdot \text{Tosses}$ |
|-----------------------------|--------------------|--------------------------------------|
| 10                          | 4                  | -1                                   |
| 100                         | 44                 | -6                                   |
| 500                         | 255                | 5                                    |
| 1,000                       | 502                | 2                                    |
| 2,000                       | 1,013              | 13                                   |
| 3,000                       | 1,510              | 10                                   |
| 4,000                       | 2,029              | 29                                   |
| 5,000                       | 2,533              | 33                                   |
| 6,000                       | 3,009              | 9                                    |
| 7,000                       | 3,516              | 16                                   |
| 8,000                       | 4,034              | 34                                   |
| 9,000                       | 4,538              | 38                                   |
| 10,000                      | 5,067              | 67                                   |

# Kerrich's results plotted



Instead of getting closer, the numbers of heads and tails are getting farther apart

# Repeating the experiment 50 times

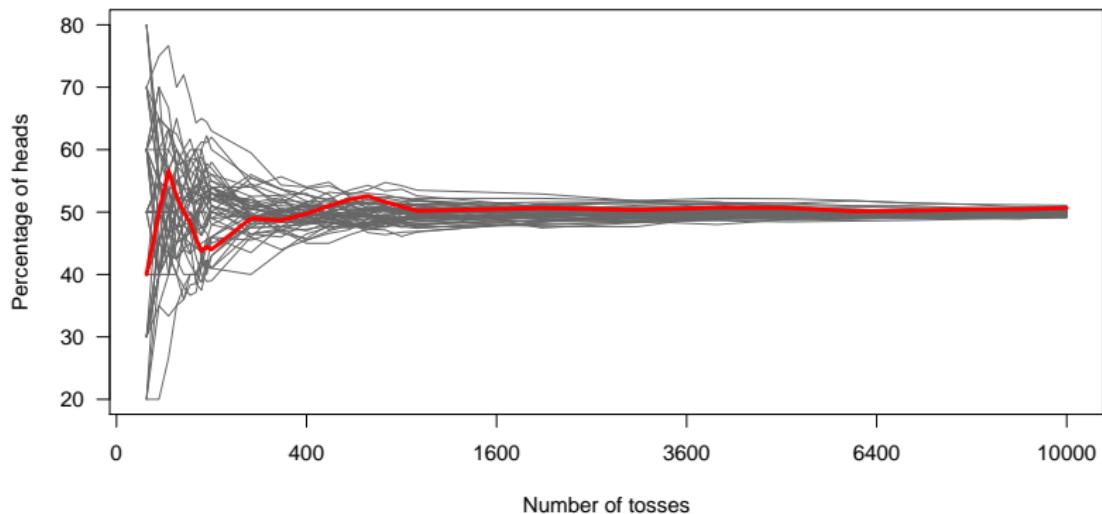


This is not a fluke – instead, it occurs systematically and consistently in repeated simulated experiments

# Where's the law of averages?

- So where's the law of averages?
- Well, the law of averages does **not** say that as  $n$  increases the number of heads will be close to the number of tails
- What it says instead is that, as  $n$  increases, the average number of heads will get closer and closer to the long-run average (in this case, 0.5)
- The technical term for this is that the sample average, which is an estimate, *converges* to the population mean, which is a parameter

# Repeating the experiment 50 times, Part II



# Trends in Kerrich's experiment

- There are three very important trends going on in this experiment
- We'll get to those three trends in a few minutes, but first, I want to introduce two additional, important facts about the binomial distribution: its mean (expected value) and standard deviation

# The expected value of the binomial distribution

- Recall that the probability of an event is the long-run percent of time it occurs
- An analogous idea exists for random variables: if we were to measure a random variable over and over again an infinite number of times, the average of those measurements would be the *expected value* of the random variable
- For example, the expected value of a random variable  $X$  following a binomial distribution with  $n$  trials and probability  $p$  is  $np$ :

$$E(X) = np$$

- This makes sense; if you flip a coin 10 times, you can expect 5 heads

# The standard deviation of the binomial distribution

- Of course, you won't always get 5 heads
- Because of variability, we are also interested in the standard deviation of random variables
- For the binomial distribution, the standard deviation is

$$\text{SD}(X) = \sqrt{np(1 - p)}$$

- To continue our example of flipping a coin 10 times, here the SD is  $\sqrt{10(0.5)(0.5)} = 1.58$ , so we can expect the number of heads to be  $5 \pm 3$  about 95% of the time (by the 95% rule of thumb)
- Note that the SD is highest when  $p = 0.5$  and gets smaller as  $p$  is close to 0 or 1 – this makes sense, as if  $p$  is close to 0 or 1, the event is more predictable and less variable

## Trends in Kerrich's experiment

- As I said a few minutes ago, there are three very important trends going on in this experiment
- These trends can be observed visually from the computer simulations or proven via the binomial distribution
- We'll work with both approaches so that you can get a sense of how they both work and how they reinforce each other

## The expected value of the mean

- The expected value of the binomial distribution is  $np$ ; what about the expected value of its *mean*?
- The mean (i.e., the sample proportion) is

$$\hat{p} = \frac{X}{n},$$

so its expected value is

$$\begin{aligned} E(\hat{p}) &= \frac{E(X)}{n} \\ &= \frac{np}{n} \\ &= p \end{aligned}$$

- In other words, for any sample size, the expected value of the sample proportion is equal to the true proportion (i.e., it is not biased)

# The standard error of the mean

- Likewise, but the standard deviation of the binomial distribution is  $\sqrt{np(1 - p)}$ , but what about the SD of the mean?
- As before,

$$\begin{aligned}\text{SD}(\hat{p}) &= \frac{\text{SD}(X)}{n} \\ &= \frac{\sqrt{np(1 - p)}}{n} \\ &= \sqrt{\frac{p(1 - p)}{n}}\end{aligned}$$

## Standard errors

- Note that, as  $n$  goes up, the variability of the # of heads goes up, but the variability of the average goes down – just as we saw in our simulation
- Indeed, the variability goes to 0 as  $n$  gets larger and larger – this is the law of averages
- The standard deviation of the average is given a special name in statistics to distinguish it from the sample standard deviation of the data
- The standard deviation of the average is called the *standard error*
- The term *standard error* refers to the variability of any estimate, to distinguish it from the variability of individual tosses or people

## The square root law

- The relationship between the variability of an individual (toss) and the variability of the average (of a large number of tosses) is a very important relationship, sometimes called the *square root law*:

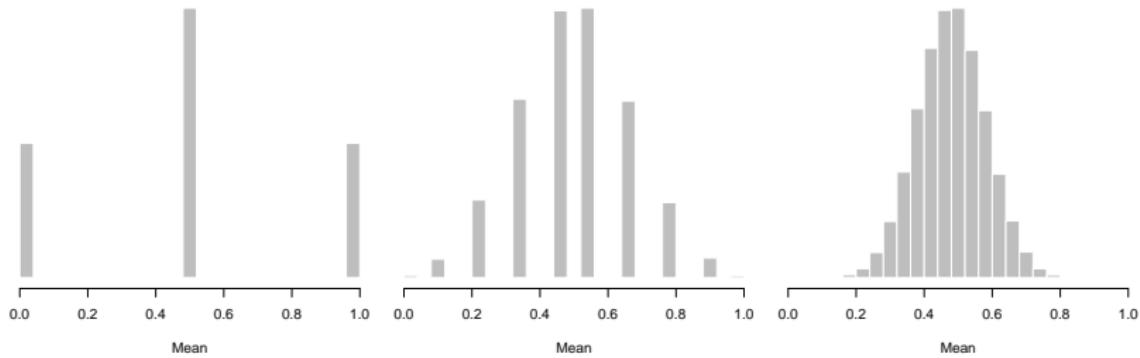
$$SE = \frac{SD}{\sqrt{n}},$$

where SE is the standard error of the mean and SD is the standard deviation of an individual (toss)

- We saw that this is true for tosses of a coin, but it is in fact true for all averages
- Once again, we see this phenomenon visually in our simulation results

# The distribution of the mean

Finally, let's look at the distribution of the mean by creating histograms of the mean in our simulation



# The central limit theorem

- In summary, there are three very important phenomena going on here concerning the sampling distribution of the sample average:
  - #1 The expected value is always equal to the population average
  - #2 The standard error is always equal to the population standard deviation divided by the square root of  $n$
  - #3 As  $n$  gets larger, the sampling distribution looks more and more like the normal distribution
- Furthermore, these three properties of the sampling distribution of the sample average hold for **any distribution** – not just the binomial

# The central limit theorem (cont'd)

- This result is called the *central limit theorem*, and it is one of the most important, remarkable, and powerful results in all of statistics
- In the real world, we rarely know the distribution of our data
- But the central limit theorem says: we don't have to

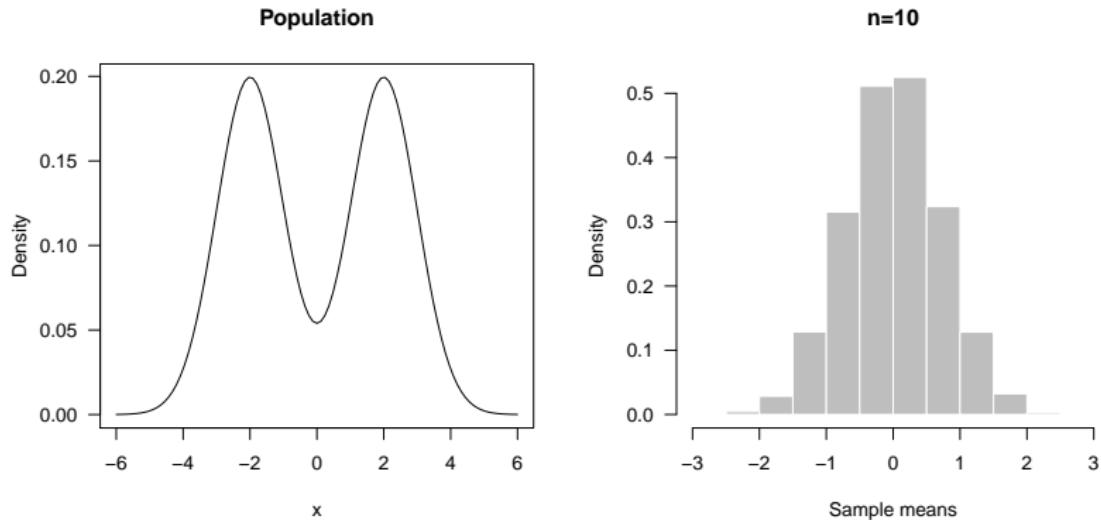
## The central limit theorem (cont'd)

- Furthermore, as we have seen, knowing the mean and standard deviation of a distribution that is approximately normal allows us to calculate anything we wish to know with tremendous accuracy – and the sampling distribution of the mean is always approximately normal
- The only caveats:
  - Observations must be independently drawn from and representative of the population
  - The central limit theorem applies to the sampling distribution of the mean – not necessarily to the sampling distribution of other statistics
  - How large does  $n$  have to be before the distribution becomes close enough in shape to the normal distribution?

## How large does $n$ have to be?

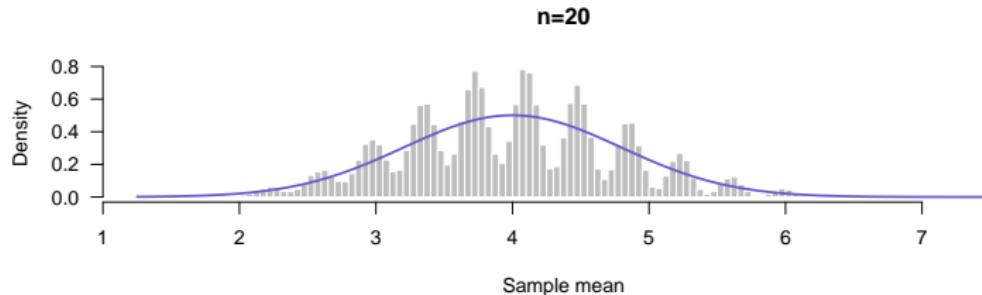
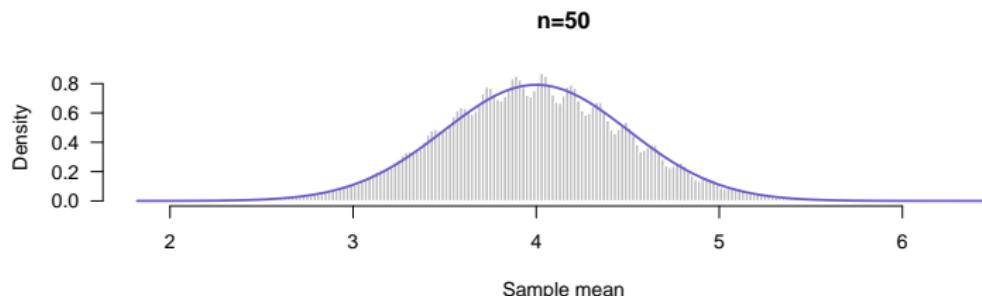
- Rules of thumb are frequently recommended that  $n = 20$  or  $n = 30$  is “large enough” to be sure that the central limit theorem is working
- There is some truth to such rules, but in reality, whether  $n$  is large enough for the central limit theorem to provide an accurate approximation to the true sampling distribution depends on how close to normal the population distribution is
- If the original distribution is close to normal,  $n = 2$  might be enough
- If the underlying distribution is highly skewed or strange in some other way,  $n = 50$  might not be enough

# Example #1

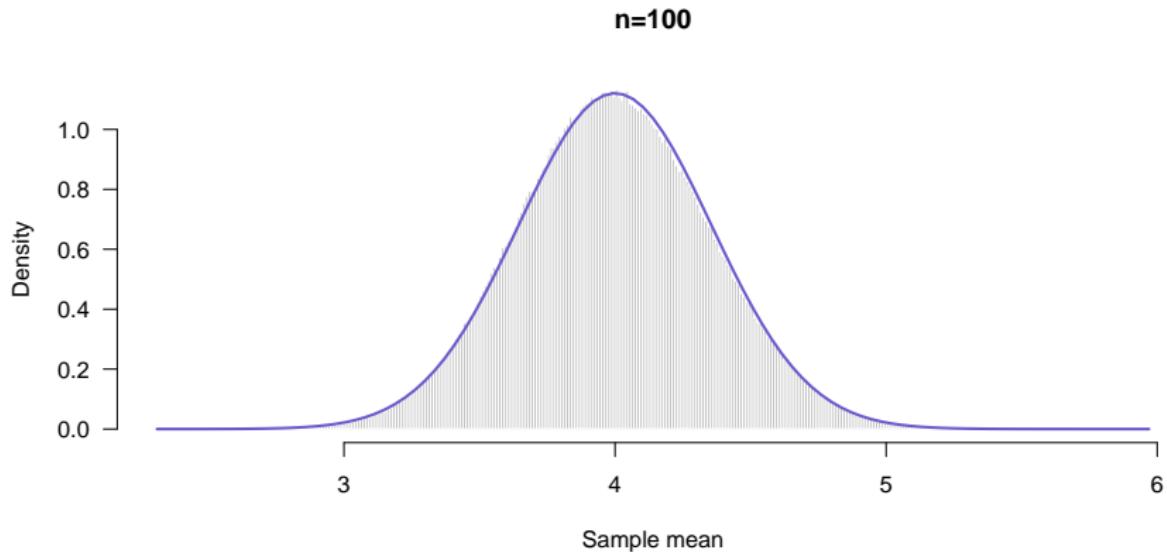


## Example #2

Now imagine an urn containing the numbers 1, 2, and 9:



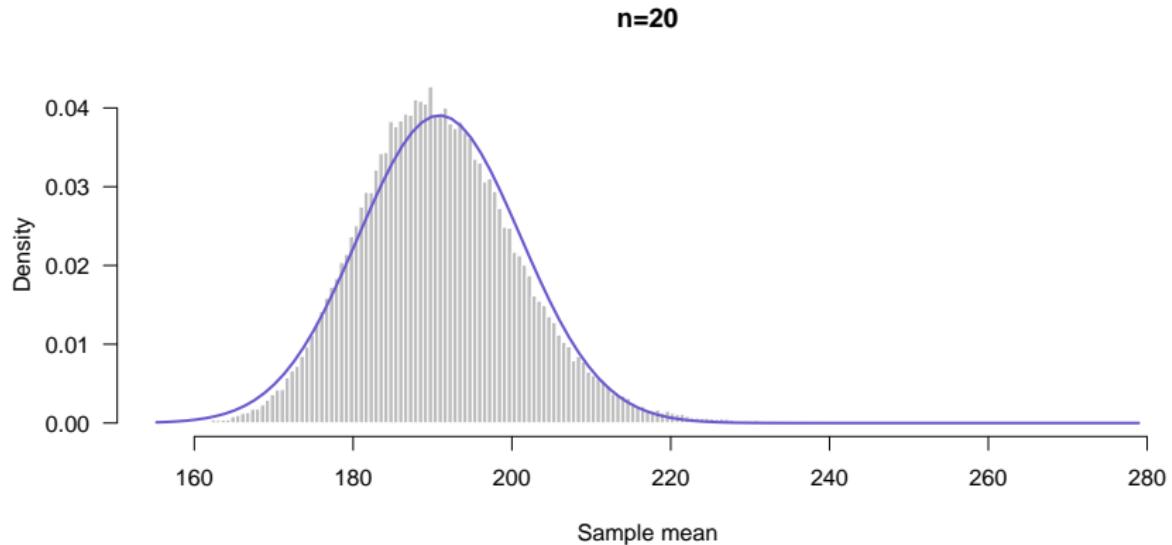
## Example #2 (cont'd)



## Example #3

- Weight tends to be skewed to the right (far more people are overweight than underweight)
- Let's perform an experiment in which the NHANES sample of adult men is the population
- I am going to randomly draw twenty-person samples from this population (*i.e.* I am re-sampling the original sample)

## Example #3 (cont'd)



# Why do so many things follow normal distributions?

- We can see now why the normal distribution comes up so often in the real world: any time a phenomenon has many contributing factors, and what we see is the average effect of all those factors, the quantity will follow a normal distribution
- For example, there is no one cause of height – thousands of genetic and environmental factors make small contributions to a person's adult height, and as a result, height is normally distributed
- On the other hand, things like eye color, cystic fibrosis, broken bones, and polio have a small number of (or a single) contributing factors, and do not follow a normal distribution

# Summary

- Central limit theorem:
  - The expected value of the average is always equal to the population average
  - $SE = SD/\sqrt{n}$
  - As  $n$  gets larger, the sampling distribution looks more and more like the normal distribution
- Generally speaking, the sampling distribution looks pretty normal by about  $n = 20$ , but this could happen faster or slower depending on the population and how skewed it is