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Probability

• People talk loosely about probability all the time: “What are
the chances the Hawkeyes will win this weekend?”, “What’s
the chance of rain tomorrow?”

• For scientific purposes, we need to be more specific in terms
of defining and using probabilities
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Events

• A random process is a phenomenon whose outcome cannot be
predicted with certainty

• An event is a collection of outcomes

• Examples:

Random process Event

Flipping a coin Obtaining heads
Child receives a vaccine Child contracts polio
Roll a die Die shows 1 or 2
10 children receive vaccine At least 1 child contracts polio
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Long-run frequency

• The probability of heads when flipping a coin is 50%

• The probability of rolling a 1 on a 6-sided die is 1/6

• Everyone agrees with these statements, but what do they
really mean?

• The probability of an event occurring is defined as the fraction
of time that it would happen if the random process occurs
over and over again under the same conditions

• Therefore, probabilities are always between 0 and 1

Patrick Breheny University of Iowa Introduction to Biostatistics (BIOS 4120) 4 / 44



Events and probability
The addition rule

The complement rule
The multiplication rule

Events
Long-run frequencies
Relationships between events

Long-run frequency (cont’d)

• Probabilities are denoted with a P (·), as in P (Heads) or
P (Child develops polio) or “Let H be the event that the
outcome of a coin flip is heads. Then P (H) = 0.5”

• Example:
◦ The probability of being dealt a full house in poker is 0.0014
◦ If you were dealt 100,000 poker hands, how many full houses

should you expect?
◦ 100, 000(0.0014) = 140

• Note: It is important to distinguish between a probability of
.0014 and a probability of .0014% (which would be a
probability of .000014)
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Long-run frequency (cont’d)

• This works both ways:
◦ For the polio data, 28 per 100,000 children who got the

vaccine developed polio
◦ The probability that a child in our sample who got the vaccine

developed polio is 28/100,000=.00028

• Of course, what we really want to know is not the probability
of a child in our sample developing polio, but the probability
of a child in the population developing polio – we’re getting
there
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Listing the ways

• When trying to figure out the probability of something, it is
sometimes helpful to list all the different ways that the
random process can turn out

• If all the ways are equally likely, then each one has probability
1
n , where n is the total number of ways

• Thus, the probability of the event is the number of ways it
can happen divided by n

• This is useful if the number of possibilities is small (e.g., the
possible numbers that you could roll with a die) and not so
useful if that number is large (e.g., all possible 5-card hands in
poker)
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Intersections, unions, and complements

• More complicated events can often be thought of being
derived from simpler events:
◦ Rolling a 2 or 3
◦ Patient who receives a therapy is relieved of symptoms and

suffers from no side effects

• The event that A does not occur is called the complement of
A and is denoted AC

• The event that both A and B occur is called the intersection
and is denoted A ∩B

• The event that either A or B occurs is called the union and is
denoted A ∪B
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Venn diagrams

These relations between events can be represented visually using
Venn diagrams:

AC

A A B A B
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Introduction

• Let event A denote rolling a 2 and event B denote rolling a 3

• What is the probability of rolling a 2 or a 3 (A ∪B)?

• It turns out to be

1

6
+

1

6
=

2

6

• On the surface, then, it would seem that
P (A ∪B) = P (A) + P (B)

• However, this is not true in general
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A counterexample

• Let A denote rolling a number 3 or less and B denote rolling
an odd number

• P (A) + P (B) = 0.5 + 0.5 = 1

• Clearly, however, we could roll a 4 or a 6, which is neither A
nor B

• What’s wrong?

Patrick Breheny University of Iowa Introduction to Biostatistics (BIOS 4120) 11 / 44



Events and probability
The addition rule

The complement rule
The multiplication rule

The addition rule
Mutually exclusive events

Double counting

• With a Venn diagram, we can get a visual idea of what is
going wrong:

A B A B

• When we add P (A) and P (B), we count A ∩B twice

• Subtracting P (A ∩B) from our answer corrects this problem
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The addition rule

• In order to determine the probability of A ∪B, we need to
know:
◦ P (A)
◦ P (B)
◦ P (A ∩B)

• If we’re given those three things, then we can use the addition
rule:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• This rule is always true for any two events
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Mutually exclusive events

• So why did P (A ∪B) = P (A) + P (B) work when A was
rolling a 2 and B was rolling a 3?

• Because P (A ∩B) = 0, so it didn’t matter whether we
subtracted it or not

• A special term is given to the situation when A and B cannot
possibly occur at the same time: such events are called
mutually exclusive
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Mutually exclusive events, example

• According to the National Center for Health Statistics, the
probability that a randomly selected woman who gave birth in
1992 was aged 20-24 was 0.263

• The probability that a randomly selected woman who gave
birth in 1992 was aged 25-29 was 0.290

• Are these events mutually exclusive?

• Yes, a woman cannot be two ages at the same time

• Therefore, the probability that a randomly selected woman
who gave birth in 1992 was aged 20-29 was
0.263+0.290=.553
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Example: Failing to use the addition rule

• In the 17th century, French gamblers used to bet on the event
that in 4 rolls of the die, at least one “ace” would come up
(an ace is rolling a one)

• In another game, they rolled a pair of dice 24 times and bet
on the event that at least one double-ace would turn up

• The Chevalier de Méré, a French nobleman, thought that the
two events were equally likely
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Example: Failing to use the addition rule

• His reasoning was as follows: letting Ai denote the event of
rolling an ace on roll i and AAi denote the event of rolling a
double-ace on roll i

P (A1 ∪A2 ∪A3 ∪A4) = P (A1) + P (A2) + P (A3) + P (A4)

=
4

6
=

2

3

P (AA1 ∪AA2 · · · ) = P (AA1) + P (AA2) + · · ·

=
24

36
=

2

3
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Example: Failing to use the addition rule

• Is the Chevalier using the addition rule properly?

• Are A1 and A2 mutually exclusive?

• No; it is possible to get an ace on roll #1 and roll #2, so you
have to subtract P (A1 ∩A2), P (A1 ∩A3), . . .

• We’ll calculate the real probabilities a little later
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Using the addition rule correctly

• An article in the American Journal of Public Health reported
that in a certain population, the probability that a child’s
gestational age is less than 37 weeks is 0.142

• The probability that his or her birth weight is less than 2500
grams is 0.051

• The probability of both is 0.031

• Can we figure out the probability that either event will occur?

• Yes: 0.142 + 0.051 - 0.031 = 0.162
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• Because an event must either occur or not occur,
P (A) + P (AC) = 1

• Thus, if we know the probability of an event, we can always
determine the probability of its complement:

P (AC) = 1− P (A)

• This simple but useful rule is called the complement rule

• Example: If the probability of getting a full house is 0.0014,
then the probability of not getting a full house must be
1− 0.0014 = 0.9986
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Balls in urns

• Imagine a random process in which balls are placed into an
urn and picked out at random, so that each ball has an equal
chance of being drawn

• Statisticians love these examples because lots of problems can
be thought of in terms of balls and urns

• For example, imagine an urn that contains 1 red ball and 2
black balls

• Let R denote drawing a red ball; what is P (R)?
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Balls in urns (cont’d)

• Now, imagine we draw a ball, put it back in the urn, and draw
a second ball (this method of drawing balls from the urn is
called sampling with replacement)

• What is the probability of drawing two red balls?

• i.e., letting Ri denote that the ith ball was red, what is
P (R1 ∩R2)?

• It turns out that this probability is:

1

3

(
1

3

)
=

1

9
≈ 11%

• On the surface, then, it would seem that
P (A ∩B) = P (A) · P (B)

• Once again, however, this is not true in general
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Balls in urns (cont’d)

• Suppose we don’t put the 1st ball back after drawing it (this
method of drawing balls from the urn is called sampling
without replacement)

• Now, it is impossible to draw red balls; instead of 11%, the
probability is 0

• Why doesn’t multiplying the probabilities work?

• Because the outcome of the first event changed the system;
after R1 occurs, P (R2) is no longer 1/3, but 0

• When we draw without replacement, P (Ri) depends on what
has happened in the earlier draws
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Conditional probability

• The notion that the probability of an event may depend on
other events is called conditional probability

• The conditional probability of event A given event B is
written as P (A|B)

• For example, in our ball and urn problem, when sampling
without replacement:
◦ P (R2) =

1
3

◦ P (R2|R1) = 0
◦ P (R2|RC

1 ) =
1
2
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The multiplication rule

• To determine P (A ∩B), we need to use the multiplication
rule:

P (A ∩B) = P (A)P (B|A)

• Alternatively, if we know P (B) and P (A|B),

P (A ∩B) = P (B)P (A|B)

• This rule is always true for any two events
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Calculating conditional probabilities

• The multiplication rule also helps us calculate conditional
probabilities

• Rearranging the formula, we have

P (A|B) =
P (A ∩B)

P (B)

• Similarly,

P (B|A) = P (A ∩B)

P (A)
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Gestational age example

• Recall our earlier example, where the probability that a child’s
gestational age is less than 37 weeks is 14.2%, the probability
that his or her birth weight is less than 2500 grams is 5.1%,
and the probability of both is 3.1%
• What is the probability that a child’s birth weight will be less

than 2500 grams, given that his/her gestational age is less
than 37 weeks?

P (Low weight|Early labor) =
P (Low weight and early labor)

P (Early labor)

=
.031

.142
= 21.8%

Note that this is much higher than the unconditional
probability of 5.1%
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Independence

• Note that sometimes, event B is completely unaffected by
event A, and P (B|A) = P (B)

• If this is the case, then events A and B are said to be
independent

• This works both ways – all the following are equivalent:
◦ P (A) = P (A|B)
◦ P (B) = P (B|A)
◦ A and B are independent

• Otherwise, if the probability of A depends on B (or vice
versa), then A and B are said to be dependent
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Dependence and independence

Scientific questions often revolve around whether or not two events
are independent, and if they are dependent, how dependent are
they?

Event A Event B

Patient survives Patient receives treatment
Student is admitted Student is male
Person develops lung cancer Person smokes
Patient will develop disease Mutation of a certain gene
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Independence and the multiplication rule

• Note that if A and B are independent, and only if they are
independent, then the multiplication rule reduces to
P (A ∩B) = P (A)P (B)

• This form is often much easier to work with, especially when
more than two events are involved:

• For example, consider an urn with 3 red balls and 2 black
balls; what is the probability of drawing three red balls?

• With replacement (draws are independent):

P (Three red balls) =

(
3

5

)3

= 21.6%
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Independence and the multiplication rule (cont’d)

• On the other hand, when events are dependent, we have to
use the multiplicative rule several times:

P (A ∩B ∩ C) = P (A)P (B|A)P (C|A ∩B)

and so on

• So, when our draws from the urn are not independent
(sampled without replacement):

P (Three red balls) =
3

5
· 2
4
· 1
3
= 10%
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Independent versus mutually exclusive

• It is important to keep in mind that “independent” and
“mutually exclusive” mean very different things

• For example, consider drawing a random card from a standard
deck of playing cards
◦ A deck of cards contains 52 cards, with 4 suits of 13 cards each
◦ The 4 suits are: hearts, clubs, spades, and diamonds
◦ The 13 cards in each suit are: ace, king, queen, jack, and 10

through 2

• If event A is drawing a queen and event B is drawing a heart,
then A and B are independent, but not mutually exclusive

• If event A is drawing a queen and event B is drawing a four,
then A and B are mutually exclusive, but not independent

• It is impossible for two events to be both mutually exclusive
and independent
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Genetics

• Independent events come up often in genetics

• A brief recap of genetics to make sure that we’re all on the
same page:
◦ Humans have two copies of each gene
◦ They pass on one of those genes at random to their child
◦ Certain diseases manifest symptoms if an individual contains at

least one copy of the harmful gene (these are called dominant
disorders)

◦ Other diseases manifest symptoms only if an individual
contains two copies of the harmful gene (these are called
recessive disorders)
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Genetics example: Cystic fibrosis

• Cystic fibrosis is an example of a recessive disorder

• Letting C denote the normal version of the gene and c the
disease-causing version of the gene, the possible outcomes of
an individual inheriting cystic fibrosis genes are

CC Cc cC cc

• If all these possibilities are equally likely (as they would be if
the individual’s parents had one copy of each version of the
gene), then the probability of having the disease (cc) is 1/4
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Alternative solution

• We can derive the same result using the laws of probability

• Again, supposing that an unaffected man and woman both
have one copy of the normal gene and one copy of the
harmful gene, and letting M/F denote the transmission of
the harmful gene from the mother/father,

P (Child has disease) = P (M ∩ F )

= P (M)P (F )

=
1

2
· 1
2

= 25%

• This might seem pedantic in this case, but the equations are
useful for more complicated cases
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Genetics example #2

• Huntington’s disease is an example of a dominant disorder
• Suppose that a man and woman each carry one copy of the

normal gene and one copy of the harmful gene; if they have a
child, what is the probability that the child will have
Huntington’s disease?
• Again, we could count, or use the rules of probability:

P (Child has disease) = P (M ∪ F )

= P (M) + P (F )− P (M ∩ F )

= P (M) + P (F )− P (M) · P (F )

=
1

2
+

1

2
− 1

2
· 1
2

= 75%
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Genetics example #2 (cont’d)

In probability, there is often more than one way to arrive at a
solution; alternatively, we could have solved the problem using:

P (Child has disease) = 1− P (Child does not have disease)

= 1− P (MC ∩ FC)

= 1− P (MC)P (FC)

= 1− .25

= 75%
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The Chevalier de Méré, Part II

• We can also use the rules of probability in combination to
solve the problem that stumped the Chevalier de Méré

• Recall that we are interested in two probabilities:
◦ What is the probability of rolling four dice and getting at least

one ace?
◦ What is the probability of rolling 24 pairs of dice and getting

at least one double-ace?
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The Chevalier de Méré, Part II (cont’d)

• First, we can use the complement rule:

P (At least one ace) = 1− P (No aces)

• Next, we can use the multiplication rule:

P (No aces) =P (No aces on roll 1)

· P (No aces on roll 2|No aces on roll 1)

· · ·
• Are rolls of dice independent?
• Yes; therefore,

P (At least one ace) = 1−
(
5

6

)4

= 51.7%
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The Chevalier de Méré, Part II (cont’d)

• By the same reasoning,

P (At least one double-ace) = 1−
(
35

36

)24

= 49.1%

• Note that this is a little smaller than the first probability, and
that both are much smaller than the 2

3 probability reasoned by
the Chevalier
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Caution

• In genetics and dice, we could multiply probabilities, ignore
dependence, and still get the right answer

• However, people often multiply probabilities when events are
not independent, leading to incorrect answers

• This is probably the most common form of mistake that
people make when calculating probabilities
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The Sally Clark case

• A dramatic example of misusing the multiplication rule
occurred during the 1999 trial of Sally Clark, on trial for the
murder of her two children
• Clark had two sons, both of which died of sudden infant death

syndrome (SIDS)
• One of the prosecution’s key witnesses was the pediatrician

Roy Meadow, who calculated that the probability of one of
Clark’s children dying from SIDS was 1 in 8543, so the
probability that both children had died of natural causes was(

1

8543

)2

=
1

73, 000, 000

• This figure was portrayed as though it represented the
probability that Clark was innocent, and she was sentenced to
life imprisonment
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The Sally Clark case (cont’d)

• However, this calculation is both inaccurate and misleading
• In a concerned letter to the Lord Chancellor, the president of

the Royal Statistical Society wrote:

The calculation leading to 1 in 73 million is invalid.
It would only be valid if SIDS cases arose
independently within families, an assumption that
would need to be justified empirically. Not only was
no such empirical justification provided in the case,
but there are very strong reasons for supposing that
the assumption is false. There may well be unknown
genetic or environmental factors that predispose
families to SIDS, so that a second case within the
family becomes much more likely than would be a
case in another, apparently similar, family.
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The Sally Clark case (cont’d)

• There are also a number of issues, also mentioned in the
letter, with the accuracy of the calculation that produced the
“1 in 8543” figure

• Finally, it is completely inappropriate to interpret the
probability of two children dying of SIDS as the probability
that the defendant is innocent

• The probability that a woman would murder both of her
children is also extremely small; one needs to compare the
probabilities of the two explanations

• The British court of appeals, recognizing the statistical flaws
in the prosecution’s argument, overturned Clark’s conviction
and she was released in 2003, having spent three years in
prison
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