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One-sample categorical data

• The binomial distribution plays a central role in the analysis of
one-sample categorical data

• For example, a study at Johns Hopkins estimated the survival
chances of infants born prematurely by surveying the records
of all premature babies born at their hospital in a three-year
period

• In their study, they found 39 babies who were born at 25
weeks gestation, 31 of which survived at least 6 months
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One-sample categorical data (cont’d)

• This type of study has one sample of 39 babies

• If some of these babies had received one type of therapy and
the rest a different kind of therapy, and we were interested in
comparing the two therapies, then we would have two samples

• The outcome of this study is categorical, in that a baby
either survived for 6 months or it didn’t

• If we had instead decided to measure lung function or weight
or some continuous measure of health, we would have
continuous data

• As we will see, recognizing how many samples there are, and
what kind of data the outcome is, plays a central role in the
proper way to analyze that study
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Generalization to the population

• The Johns Hopkins study observed that 31/39 = 79.5% of
babies survive after being born at 25 weeks gestation

• The goal of the study was not to audit their hospital’s
performance, but to estimate the percent of babies in other
(comparable) hospitals, in future years (although maybe not
too far in the future), that would survive early labor

• This is the generalization they want to make, but how
accurate is their percentage?

• Could the actual percent of babies who would survive such an
early labor (in other hospitals, in future years) be as high as
95%? As low as 50%?
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Confidence interval

• The number of infants who survive will follow a binomial
distribution

• Let π denote the true, unknown probability that an infant will
survive, and let π̂ = .795 equal our estimate of that
probability based on our sample (this is common notation in
statistics to distinguish parameters from estimates)

• In order to build a 95% confidence interval, we need a way to
calculate two numbers, (πL, πU ) that have a 95% probability
of containing π

• The most straightforward way of doing this is via hypothesis
testing: test all the values of π, and anything we reject
doesn’t make it into the confidence interval

• Technical point: we’re actually going to be doing two tests here, one for

πL and one for πU , so they need to be carried out at the α = 0.025 level
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Trial and error

• Let’s start by testing whether πL = .5 is reasonable

• If π = .5, what is the probability that 31 or more babies (out
of 39) would survive?

• Letting X denote the number of babies who survive,

P (X ≥ 31) = P (X = 31) + P (X = 32) + . . .

=
39!

31!8!
.531(1− .5)8 + . . .

= .000112 + .000028 + . . .

= .00015

• This is much lower than 0.025, so we can exclude π = 0.5
from our interval

Patrick Breheny University of Iowa Introduction to Biostatistics (BIOS 4120) 6 / 26



Confidence intervals
Paired samples

The binomial test

Finding πL and πU

This sort of trial and error is tedious to do by hand, but trivial for
a computer:

0.50 0.55 0.60 0.65 0.70

0.00

0.05

0.10

0.15

π

P
(3

1 
or

 m
or

e 
su

rv
iv

e)

0.88 0.90 0.92 0.94

0.00

0.05

0.10

0.15

π

P
(3

1 
or

 fe
w

er
 s

ur
vi

ve
)

Patrick Breheny University of Iowa Introduction to Biostatistics (BIOS 4120) 7 / 26



Confidence intervals
Paired samples

The binomial test

Confidence interval results

• Thus, our confidence interval for the (population) percentage
of infants who survive after being born at 25 weeks is
(63.5%,90.7%)

• In their study, the Johns Hopkins researchers also found 29
infants born at 22 weeks gestation, none of which survived 6
months

• Applying the same procedure, we obtain the following
confidence interval for the percentage of infants who survive
after being born at 22 weeks: (0%,11.9%)
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Constructing confidence intervals in R

• These intervals are not practical to construct by hand, and I
do not expect you to ever attempt it

• It is very useful, however, to know how to calculate these
intervals in R:

> binom.test(31,39)

95 percent confidence interval:

0.6353558 0.9070361

> binom.test(0,29)

95 percent confidence interval:

0.0000000 0.1194449
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One-sample hypothesis tests

• It is relatively rare to have specific hypotheses in one-sample
studies

• One very important exception is the collection of paired
samples

• In a paired sampling design, we collect n pairs of observations
and analyze the difference between the pairs
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Hypothetical example: A sunblock study

• Suppose we are conducting a study investigating whether
sunblock A is better than sunblock B at preventing sunburns

• The first design that comes to mind is probably to randomly
assign sunblock A to one group and sunblock B to a different
group

• There is nothing wrong with this design, but we can do better
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Signal and noise

• Generally speaking, our ability to make generalizations about
the population depends on two factors: signal and noise

• Signal is the magnitude of the difference between the two
groups – in the present context, how much better one
sunblock is than the other

• Noise is the variability present in the outcome from all other
sources besides the one you’re interested in – in the sunblock
experiment, this would include factors like how sunny the day
was, how much time the person spent outside, how easily the
person burns, etc.

• Hypothesis tests depend on the ratio of signal to noise – how
easily we can distinguish the treatment effect from all other
sources of variability
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Signal to noise ratio

• To get a larger signal-to-noise ratio, we must either increase
the signal or reduce the variability

• The signal is usually determined by nature and out of our
control

• Instead, we are going to have to reduce the variability/noise

• If our sunblock experiment were controlled, we could attempt
such steps as forcing all participants to spend an equal
amount of time outside, on the same day, in an equally sunny
area, etc.
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Person-to-person variability

• But what can be done about person-to-person variability (how
easily certain people burn)?

• A powerful technique for reducing person-to-person variability
is pairing

• For each person, we can apply sunblock A (at random) to one
of their arms, and sunblock B to the other arm, and as an
outcome, look at the difference between the two arms

• In this experiment, the items that we randomly sample from
the population are pairs of arms belonging to the same person
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Benefits of paired designs

• What do we gain from this?

• As variability goes down,
◦ Confidence intervals become narrower
◦ Hypothesis tests become more powerful (smaller p values)
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Pairing in observational studies

• Experimenters have come up with all kinds of clever ways to
use pairing to cut down on variability:
◦ Crossover studies
◦ Split-plot experiments

• Pairing is also widely used in observational studies
◦ Twin studies
◦ Matched studies

• In a matched study, the investigator will pair up (“match”)
subjects on the basis of variables such as age, sex, or race,
then analyze the difference between the pairs

• In addition to increasing power, pairing in observational
studies also eliminates (some of the) potential confounding
variables
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Cystic fibrosis experiment

• As an example of a paired study, we will look at a crossover
study of the drug amiloride as a therapy for patients with
cystic fibrosis

• Cystic fibrosis is a genetic disease that affects the lungs

• Forced vital capacity (FVC) is the volume of air that a person
can expel from the lungs in 6 seconds

• FVC is a measure of lung function, and is often used as a
marker of the progression of cystic fibrosis
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Design of the cystic fibrosis experiment

• There were 14 people who participated in the study

• Each participant in the trial received both the drug and the
placebo (at different times), “crossing over” to receive the
other treatment halfway through the trial

• Like all well-designed crossover trials, the therapy
(treatment/placebo) that each participant received first was
chosen at random

• Furthermore, there was a washout period during the crossover
between the two drug periods
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The outcome

• To determine an outcome, the FVC of the patients was
measured at the beginning of each treatment period, and
again at the end

• The outcome is the reduction in lung function over the
treatment period

• So, for example, if a patient’s FVC was 900 at the beginning
of the drug period and 850 at the end, the reduction is 50

• In the actual study, 11 of the 14 patients did better on the
drug than on the placebo

• A hypothesis test informs us whether or not this kind of result
could be due to chance alone
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The null hypothesis

• The null hypothesis here is that the drug provides no benefit –
that whether the patient received drug or placebo has no
impact on their lung function

• Under the null hypothesis, then, the probability that a patient
does better on drug than placebo is 50% (i.e., π = 0.5)

• Essentially, under the null, whether a patient does better on
one treatment or another is like flipping a coin
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The binomial test

• One way to test this null hypothesis would be to flip a coin 14
times, count the number of heads, and repeat this over and
over again to see how unusual “11 heads” is

• However, this is unnecessary, as we already have the binomial
distribution to calculate these probabilities for us

• Under the null hypothesis, the number of patients who do
better on the drug than placebo (X) will follow a binomial
distribution with n = 14 and π = 0.5

• This approach to hypothesis testing goes by several names,
and could be called the exact test, the binomial test, or the
sign test

• What we need to do is calculate the p-value: the probability
of obtaining results as extreme or more extreme than the one
observed in the data, given that the null hypothesis is true
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“As extreme or more extreme”

• The result observed in the data was that 11 patients did
better on the drug

• But what exactly is meant by “as extreme or more extreme”
than 11?

• It is uncontroversial that 11, 12, 13, and 14 are as extreme or
more extreme than 11

• But what about 0? Is that more extreme than 11?

• Under the null, P (11) = 2.2%, while P (0) = .006%

• So 0 is more extreme than 11, but in a different direction
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One-sided vs. two-sided tests

• Potentially, then, we have two different approaches to
calculating this p-value:
◦ Find the probability that X ≥ 11
◦ Find the probability that X ≥ 11 ∪X ≤ 3 (the number that is

as far away from 7 as 11 is, but in the other direction)

• These are both reasonable things to do, and intelligent people
have argued both sides of the debate

• However, the scientific community has for the most part come
down in favor of the latter – the so called “two-sided test”

• For this class, all of our tests will be two-sided tests
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• Thus, the p-value of the sign test is

p = P (X ≤ 3) + P (X ≥ 11)

= P (X = 0) + · · ·+ P (X = 3) + P (X = 11) + · · ·+ P (X = 14)

= .006% + .09% + .6% + 2.2% + 2.2% + .6% + .09% + .006%

= 5.7%

• In R:

> binom.test(11,14)

p-value = 0.05737

• Seeing 11 out of 14 patients do better on one treatment than
another is therefore fairly unlikely, but represents only a
moderate amount of evidence against the null hypothesis
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Cystic fibrosis study: Confidence interval

• Recall that it is not valid to conclude from this that amiloride
is equivalent to placebo

• As always, calculating a confidence interval provides more
information

• Here, the binomial confidence interval is [49.2, 95.3],
indicating that while it is possible the drug has no effect (50%
is inside the interval), it is also possible the drug has a huge
effect and would benefit 95% of cystic fibrosis patients

• Unfortunately, with only 14 subjects enrolled, this study is
fairly inconclusive and the confidence interval is very wide

• A reasonable one sentence summary might be, “The study
produced only borderline evidence that amiloride improves
lung function in cystic fibrosis patients compared to a
placebo.”
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Summary

• It is possible to calculate exact confidence intervals for
one-sample categorical studies using the binomial distribution
(but you’d need a computer to do it)

• Pairing is a powerful idea in study design for reducing
variability and increasing the power of an experiment

• Often, there is no null hypothesis for one-sample studies;
paired studies are an exception

• For one-sample categorical studies, you can calculate exact
p-values for testing the null hypothesis using the binomial
distribution (you wouldn’t need a computer, but a calculator
would help)
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