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Introduction

@ It is relatively easy to think about the distribution of data —
heights or weights or blood pressures: we can see these
numbers, summarize them, plot them, etc.

@ It is much harder to think about things like the distribution of
the sample mean, because in reality the experiment is
conducted only once and we only see one mean

@ The distribution of the mean is more of a hypothetical
concept describing what would happen if we were to repeat
the experiment over and over
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Sampling distributions

@ Consider a study to determine the average cholesterol level in
a certain population; if we were to repeat this study many
times, we would get different estimates each time, depending
on the random sample we drew

@ To reflect the fact that its distribution depends on the random
sample, the distribution of an estimate (such as the sample
mean) is called a sampling distribution

@ Sampling distributions are of fundamental importance to the
long-run frequency approach to statistical inference and
essential for carrying out hypothesis tests and constructing
confidence intervals

@ In a broader sense, we study sampling distributions to
understand how reproducible a study’s findings are, and in
turn, how accurate its generalizations are likely to be
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Sampling distributions (cont’d)

@ For independent one-zero outcomes, the sampling distribution
was simple enough that we could derive it exactly and
describe it with a simple formula

@ For most other outcomes, however, this is not possible and we
often rely instead on the central limit theorem to provide the
sampling distribution — as we've seen, this is not exact, but
usually a very good approximation
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Applying the central limit theorem

@ To get a sense of how useful the central limit theorem is, let's
return to our hypothetical study to determine an average
cholesterol level

@ According the National Center for Health Statistics, the
distribution of serum cholesterol levels for 20- to 74-year-old
males living in the United States has mean 211 mg/dl, and a
standard deviation of 46 mg/dl (these are estimates, of
course, but for the sake of this example we will take them to
be the true population parameters)

e We collect a sample of size 25; what is the probability that our
sample average will be above 2307

o We collect a sample of size 25; 95% of our sample averages
will fall between what two numbers?

e How large does the sample size need to be in order to insure a
95% probability that the sample average will be within 5
mg/dl of the population mean?
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Introduction

@ We can use this same line of thinking to develop hypothesis
tests and confidence intervals
@ We'll begin by revisiting one-sample categorical data because

e It's the simplest scenario

e We can compare our new simple-yet-approximate results to the
exact hypothesis tests and confidence intervals that we
obtained earlier based on the binomial distribution
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One-zero (Bernoulli) distribution: mean and variance

@ To use the central limit theorem, we need the population
mean and variance

@ For a single one-zero outcome (known as the Bernoulli
distribution), its mean is 7 as we showed in the previous
lecture

@ Theorem: For a Bernoulli random variable X,
Var(X) =n(1 —7)
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Hypothesis testing

@ Now we're ready to carry out a hypothesis test based on the
central limit theorem

o Consider our cystic fibrosis experiment in which 11 out of 14
people did better on the drug than the placebo; expressing
this as an average, 7 = 11/14 = .79 (i.e., 79% of the subjects
did better on drug than placebo)

@ Under the null hypothesis, the sampling distribution of the
percentage who did better on one therapy than the other will
(approximately) follow a normal distribution with mean
mo = 0.5

@ The notation my refers to the hypothesized value of the
parameter 7 under the null
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The standard error

e What about the standard error (i.e., the standard deviation of
7)?
@ Recall that SE = SD/y/n, so for a Bernoulli random variable,

mo(1 — 7o)
n

SE =
1
2v/n

@ For the cystic fibrosis experiment, under the null SE = 0.134
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Approximate test for the cystic fibrosis experiment

@ To calculate a p-value, we need the probability that 7 is more
extreme than 11/14 given that the true probability is 79 = 0.5

@ By the central limit theorem, under the null
T —To

SE

<~ N(0,1)

@ Thus,
7865
Y
—2.14

and the p-value of this test is therefore 2(1 — ®(2.14)) = .032

@ In other words, if the null hypothesis were true, there would
only be about a 3% chance of seeing the drug do this much
better than the placebo
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Terminology

@ Hypothesis tests revolve around calculating some statistic
(known as a test statistic) from the data that, under the null
hypothesis, you know the distribution of

@ In this case, our test statistic is z: we can calculate it from
the data, and under the null hypothesis, it follows a normal
distribution

@ Tests are often named after their test statistics: the testing
procedure we just described is called a z-test
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Accuracy of the approximation

@ So the z-test indicates moderate evidence against the null;
recall, however, that we calculated a p-value of 6% from the
(exact) binomial test, which is more in the "borderline
evidence” region

@ With a sample size of just 14, the distribution of the sample
average is still fairly discrete, and this throws off the normal
approximation by a bit:

Density

o>
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Confidence interval #1: Wald

Introduction: confidence intervals

@ Now let's turn our attention to confidence intervals

@ As usual, this is a harder problem — hypothesis testing was
straightforward because under the null, we knew 7y and
therefore we know the standard error

@ This is not true in trying to determine a confidence interval —
the SE depends on 7, which we don’t know

@ There are two common approaches to dealing with this
problem, known as the Wald interval and the score interval;
we will discuss both
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Confidence interval #1

Wald approach: Main idea

@ In the Wald approach, we use 7 to estimate SE

@ The idea behind this approach is that uses our “best guess”
about 7 to obtain a “best guess” for the SE

@ Otherwise, however, this approach does not directly account
for the fact that SE depends on 7
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Wald approach for CF study

o For the CF study,

0.786(1 — 0.786)
4

S — /P =P)
n
1

0.110

@ Now, by the central limit theorem,

T—

0.110

<~ N(0,1)

and we can solve for 7 to obtain a confidence interval
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Wald approach for CF study (cont'd)

@ For the standard normal distribution,

~1(0.975) = 1.96
~1(0.025) = —1.96

@ Thus,

0.95 = P(—1.96 < Z < 1.96) ~ P (—1.96 < 7(; 1_13 < 1.96) :

and
[ —1.96(0.110), 7 + 1.96(0.110)] = [57.1%, 100.0%)]

is an approximate 95% confidence interval for 7
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Wald formula

@ Let z, denote the value that contains the middle 100(1 — «)
percent of the standard normal distribution

@ We can summarize the Wald interval with the formula
7 + 24SE, where SE = \/7(1 — 7)/n

@ As we will see, this is actually a very common form for
confidence intervals (estimate plus/minus a multiple of the
standard error), although the multiplier and standard error
formulas change depending on what we are estimating
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Confidence interval #2: Score

Score approach: Main idea

@ The score approach also uses the central limit theorem to
create approximate confidence intervals, but does so in a
different manner than the Wald approach

@ The score approach works very similarly to the
Clopper-Pearson interval, except that instead of inverting the
binomial test, we invert the CLT-based test from earlier

@ This amounts to solving the quadratic formula

T—T

m(l—7)/n

=ZO[

for
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Score approach: Formula

@ In other words, the endpoints of the score interval are given by

—b+ Vb2 —4ac

2a

where @ = 1+ 22 /n, b= —2z2/n — 27, and ¢ = 72 (although |
certainly don't expect you to remember this formula)

@ For the cystic fibrosis study, the 95% Cl is [52.4%, 92.4%]

@ The score approach lies somewhat in between the Wald and
Clopper-Pearson approaches: still based on a CLT

approximation to the true sampling distribution, but
accounting for the fact that SE varies with 7
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Cystic fibrosis study

@ Let's take a look at how the three confidence intervals
(binomial, wald, score) compare for the three studies we've
discussed previously

@ For the cystic fibrosis study (x=11, n=14), we have:

e Binomial: [49.2, 95.3]
o Wald: [57.1, 100.0]
o Score: [52.4, 92.4]

@ The score interval isn't too bad, but the Wald interval is

pretty far off
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Infant survival, 25 weeks

@ Sometimes, the agreement is much better; for the infant
survival data at 25 weeks (x=31,n=39), we have:
e Binomial: [63.6, 90.7]
o Wald: [66.8, 92.2]
e Score: [64.5, 89.2]

@ Here all three intervals are reasonably close, although the
score interval is again closer to the binomial interval
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Infant survival, 25 weeks

@ And sometimes, the Wald interval fails completely; for the
infant survival data at 22 weeks (x=0,n=29), we have:
e Binomial: [0, 11.9]
o Wald: [0, 0]
e Score: [0, 11.7]

@ The Wald interval is clearly useless in this scenario
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Accuracy of the normal approximation

@ The real sampling distribution is binomial, but when n is
reasonably big and p isn't close to 0 or 1, the binomial
distribution looks a lot like the normal distribution, so the
normal approximation works pretty well

@ When n is small and/or p is close to 0 or 1, the normal
approximation doesn't work very well:
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Exact vs. approximate intervals

@ When n is large and p isn't close to 0 or 1, it doesn't really
matter whether you choose the approximate or the exact
approach

@ The approximate approaches are easy to do by hand, although
in the computer era, this is often not important in real life

@ Keep in mind, however, that the Clopper-Pearson interval is
“exact” in the sense that it is based on the exact sampling
distribution, but as we saw in lab, does not produce exact
1 — « coverage
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Summary

A sampling distribution is the distribution of an estimate

based on a sample from a population

@ Know how to use the CLT to approximate sampling
distributions

@ Know how to use the CLT to carry out approximate tests for
one-sample categorical data

e Wald Cl: 7 £ 2,SE, where SE = /7(1 — 7)/n, although this

approximation can be very poor at times

@ Score Cl: Based on inverting the CLT-based test; still
approximate, but better than Wald
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