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Introduction

It is relatively easy to think about the distribution of data –
heights or weights or blood pressures: we can see these
numbers, summarize them, plot them, etc.

It is much harder to think about things like the distribution of
the sample mean, because in reality the experiment is
conducted only once and we only see one mean

The distribution of the mean is more of a hypothetical
concept describing what would happen if we were to repeat
the experiment over and over
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Sampling distributions

Consider a study to determine the average cholesterol level in
a certain population; if we were to repeat this study many
times, we would get different estimates each time, depending
on the random sample we drew

To reflect the fact that its distribution depends on the random
sample, the distribution of an estimate (such as the sample
mean) is called a sampling distribution

Sampling distributions are of fundamental importance to the
long-run frequency approach to statistical inference and
essential for carrying out hypothesis tests and constructing
confidence intervals

In a broader sense, we study sampling distributions to
understand how reproducible a study’s findings are, and in
turn, how accurate its generalizations are likely to be
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Sampling distributions (cont’d)

For independent one-zero outcomes, the sampling distribution
was simple enough that we could derive it exactly and
describe it with a simple formula

For most other outcomes, however, this is not possible and we
often rely instead on the central limit theorem to provide the
sampling distribution – as we’ve seen, this is not exact, but
usually a very good approximation
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Applying the central limit theorem

To get a sense of how useful the central limit theorem is, let’s
return to our hypothetical study to determine an average
cholesterol level
According the National Center for Health Statistics, the
distribution of serum cholesterol levels for 20- to 74-year-old
males living in the United States has mean 211 mg/dl, and a
standard deviation of 46 mg/dl (these are estimates, of
course, but for the sake of this example we will take them to
be the true population parameters)

We collect a sample of size 25; what is the probability that our
sample average will be above 230?
We collect a sample of size 25; 95% of our sample averages
will fall between what two numbers?
How large does the sample size need to be in order to insure a
95% probability that the sample average will be within 5
mg/dl of the population mean?
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Introduction

We can use this same line of thinking to develop hypothesis
tests and confidence intervals

We’ll begin by revisiting one-sample categorical data because

It’s the simplest scenario
We can compare our new simple-yet-approximate results to the
exact hypothesis tests and confidence intervals that we
obtained earlier based on the binomial distribution
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One-zero (Bernoulli) distribution: mean and variance

To use the central limit theorem, we need the population
mean and variance

For a single one-zero outcome (known as the Bernoulli
distribution), its mean is π as we showed in the previous
lecture

Theorem: For a Bernoulli random variable X,
Var(X) = π(1− π)
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Hypothesis testing

Now we’re ready to carry out a hypothesis test based on the
central limit theorem

Consider our cystic fibrosis experiment in which 11 out of 14
people did better on the drug than the placebo; expressing
this as an average, π̂ = 11/14 = .79 (i.e., 79% of the subjects
did better on drug than placebo)

Under the null hypothesis, the sampling distribution of the
percentage who did better on one therapy than the other will
(approximately) follow a normal distribution with mean
π0 = 0.5

The notation π0 refers to the hypothesized value of the
parameter π under the null
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The standard error

What about the standard error (i.e., the standard deviation of
π̂)?

Recall that SE = SD/
√
n, so for a Bernoulli random variable,

SE =

√
π0(1− π0)

n

=
1

2
√
n

For the cystic fibrosis experiment, under the null SE = 0.134
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Approximate test for the cystic fibrosis experiment

To calculate a p-value, we need the probability that π̂ is more
extreme than 11/14 given that the true probability is π0 = 0.5

By the central limit theorem, under the null

π̂ − π0
SE

.∼ N(0, 1)

Thus,

z =
.786− .5
.134

= 2.14

and the p-value of this test is therefore 2(1− Φ(2.14)) = .032

In other words, if the null hypothesis were true, there would
only be about a 3% chance of seeing the drug do this much
better than the placebo
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Terminology

Hypothesis tests revolve around calculating some statistic
(known as a test statistic) from the data that, under the null
hypothesis, you know the distribution of

In this case, our test statistic is z: we can calculate it from
the data, and under the null hypothesis, it follows a normal
distribution

Tests are often named after their test statistics: the testing
procedure we just described is called a z-test
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Accuracy of the approximation

So the z-test indicates moderate evidence against the null;
recall, however, that we calculated a p-value of 6% from the
(exact) binomial test, which is more in the “borderline
evidence” region

With a sample size of just 14, the distribution of the sample
average is still fairly discrete, and this throws off the normal
approximation by a bit:

p̂

D
en

si
ty

0 0.5 1
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Introduction: confidence intervals

Now let’s turn our attention to confidence intervals

As usual, this is a harder problem – hypothesis testing was
straightforward because under the null, we knew π0 and
therefore we know the standard error

This is not true in trying to determine a confidence interval –
the SE depends on π, which we don’t know

There are two common approaches to dealing with this
problem, known as the Wald interval and the score interval;
we will discuss both
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Wald approach: Main idea

In the Wald approach, we use π̂ to estimate SE

The idea behind this approach is that uses our “best guess”
about π to obtain a “best guess” for the SE

Otherwise, however, this approach does not directly account
for the fact that SE depends on π
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Wald approach for CF study

For the CF study,

SE =

√
p̂(1− p̂)

n

=

√
0.786(1− 0.786)

14

= 0.110

Now, by the central limit theorem,

π̂ − π
0.110

.∼ N(0, 1)

and we can solve for π to obtain a confidence interval
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Wald approach for CF study (cont’d)

For the standard normal distribution,

Φ−1(0.975) = 1.96

Φ−1(0.025) = −1.96

Thus,

0.95 = P (−1.96 < Z < 1.96) ≈ P
(
−1.96 <

π̂ − π
0.110

< 1.96

)
,

and

[π̂ − 1.96(0.110), π̂ + 1.96(0.110)] = [57.1%, 100.0%]

is an approximate 95% confidence interval for π
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Wald formula

Let zα denote the value that contains the middle 100(1− α)
percent of the standard normal distribution

We can summarize the Wald interval with the formula
π̂ ± zαSE, where SE =

√
π̂(1− π̂)/n

As we will see, this is actually a very common form for
confidence intervals (estimate plus/minus a multiple of the
standard error), although the multiplier and standard error
formulas change depending on what we are estimating
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Score approach: Main idea

The score approach also uses the central limit theorem to
create approximate confidence intervals, but does so in a
different manner than the Wald approach

The score approach works very similarly to the
Clopper-Pearson interval, except that instead of inverting the
binomial test, we invert the CLT-based test from earlier

This amounts to solving the quadratic formula

π̂ − π√
π(1− π)/n

= zα

for π
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Score approach: Formula

In other words, the endpoints of the score interval are given by

−b±
√
b2 − 4ac

2a
,

where a = 1 + z2α/n, b = −z2α/n− 2π̂, and c = π̂2 (although I
certainly don’t expect you to remember this formula)

For the cystic fibrosis study, the 95% CI is [52.4%, 92.4%]

The score approach lies somewhat in between the Wald and
Clopper-Pearson approaches: still based on a CLT
approximation to the true sampling distribution, but
accounting for the fact that SE varies with π
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Cystic fibrosis study

Let’s take a look at how the three confidence intervals
(binomial, wald, score) compare for the three studies we’ve
discussed previously

For the cystic fibrosis study (x=11, n=14), we have:

Binomial: [49.2, 95.3]
Wald: [57.1, 100.0]
Score: [52.4, 92.4]

The score interval isn’t too bad, but the Wald interval is
pretty far off
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Infant survival, 25 weeks

Sometimes, the agreement is much better; for the infant
survival data at 25 weeks (x=31,n=39), we have:

Binomial: [63.6, 90.7]
Wald: [66.8, 92.2]
Score: [64.5, 89.2]

Here all three intervals are reasonably close, although the
score interval is again closer to the binomial interval
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Infant survival, 25 weeks

And sometimes, the Wald interval fails completely; for the
infant survival data at 22 weeks (x=0,n=29), we have:

Binomial: [0, 11.9]
Wald: [0, 0]
Score: [0, 11.7]

The Wald interval is clearly useless in this scenario
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Accuracy of the normal approximation

The real sampling distribution is binomial, but when n is
reasonably big and p isn’t close to 0 or 1, the binomial
distribution looks a lot like the normal distribution, so the
normal approximation works pretty well

When n is small and/or p is close to 0 or 1, the normal
approximation doesn’t work very well:
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Exact vs. approximate intervals

When n is large and p isn’t close to 0 or 1, it doesn’t really
matter whether you choose the approximate or the exact
approach

The approximate approaches are easy to do by hand, although
in the computer era, this is often not important in real life

Keep in mind, however, that the Clopper-Pearson interval is
“exact” in the sense that it is based on the exact sampling
distribution, but as we saw in lab, does not produce exact
1− α coverage
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Summary

A sampling distribution is the distribution of an estimate
based on a sample from a population

Know how to use the CLT to approximate sampling
distributions

Know how to use the CLT to carry out approximate tests for
one-sample categorical data

Wald CI: π̂ ± zαSE, where SE =
√
π̂(1− π̂)/n, although this

approximation can be very poor at times

Score CI: Based on inverting the CLT-based test; still
approximate, but better than Wald
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