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Recap

• In our last lecture, we considered the problem of inferring the
survival probability θ of a baby born at 25 weeks gestation,
based on the Johns Hopkins study in which 31/39 such babies
survived

• In that lecture, we took the long-run frequency interpretation
of probability; from this perspective, the survival probability
we are interested in is a fixed quantity

• To carry out inference, we constructed a confidence interval
according to a procedure guaranteed to contain the true
probability of a binomial proportion (at least) 95% of the time
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Treating θ as random

• In today’s lecture, we’ll consider the same problem from the
probability-as-uncertainty school of thought

• From this perspective, θ is random – not because it’s
changing from moment to moment, but because we don’t
know what it is

• Since θ is now a random quantity, we cannot discuss its
“value”, but must instead discuss its distribution, f(θ), which,
again, provides a complete description of all the values θ can
take on and the probability that it falls within any interval of
values
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f(θ|x)

• Now, the notion of probability-as-uncertainty is inherently
subjective, but we can (and should) at least base our beliefs
concerning θ on something objective – namely, the fact that
x = 31 babies survived

• Thus, what we’re really interested in is the distribution of θ
based on the data, or more formally, f(θ|x)

• From the perspective of treating θ as random, this conditional
probability of the unknown given the data is the focus of all
inference, not just in the binomial problem but for any
inference of any kind
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Bayes rule

• As we have already discussed, it is reasonable to assume that
f(x|θ) is the binomial distribution

• What we need, then, is a way to determine f(θ|x) based on
f(x|θ)
• As you hopefully recall from the lecture on probability, this is

exactly the kind of thing you use Bayes rule for

• As we’ll see on the next slide, however, there is an added
wrinkle here that we haven’t seen before – to calculate
f(θ|x), we need to specify f(θ)

Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 5 / 25



Introduction
Bayesian inference for a binomial proportion

Summary

Paradigm for Bayesian inference

Letting θ denote an unknown parameter of interest and x observed
data, the basic approach to Bayesian inference can be represented
as follows:

f(θ|x) =
f(θ)f(x|θ)

f(x)
,

where

• f(θ) is the prior: Our beliefs about the plausible values of our
parameter before seeing any data

• f(x|θ) is the likelihood: The sampling distribution for how the
data depends on the unknown parameters

• f(θ|x) is the posterior: Our updated beliefs about the
plausible values for our parameter after seeing the data

• f(x) is a normalizing constant typically not of interest
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The central role of Bayes rule

• Note that the long-run frequency perspective didn’t tell us
anything about how to conduct inference – we could construct
intervals in any possible way we choose, so long as they had
the appropriate coverage probability

• The probability-as-uncertainty perspective, on the other hand,
tells us exactly how to carry out inference, in every situation:
you always use Bayes rule

• Because of this central role of Bayes rule in carrying out all
inference according to this perspective, this approach to
statistical inference is known as Bayesian, as in Bayesian
inference, Bayesian statistics, etc.
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Specifying a probability model

• So let’s proceed with an analysis of the Johns Hopkins infant
survival study from the Bayesian perspective

• In any Bayesian analysis, we need to specify two things:
◦ The likelihood f(x|θ), which in this case is binomial
◦ The prior f(θ)

• We’ll consider various choices for the prior, but let’s start with
a uniform distribution:
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The Beta distribution

• With this model,

f(θ|x) ∝ θx(1− θ)n−x

• This falls into a well-known and well-studied family of
distributions in statistics known as the beta distribution

• A random variable Y follows a beta distribution with shape
parameters α > 0 and β > 0 if its pdf is

f(y|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1

over the region [0, 1] and 0 otherwise

• Γ(·) is the Gamma function, Γ(α) =
∫∞
0
tα−1e−tdt
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The posterior distribution

Thus, θ|x ∼ Beta(x+ 1, n− x+ 1), which for n = 39 and x = 31
looks like this:
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Posterior intervals

• It would be nice to summarize this distribution with an
interval that had, say, a 95% probability of containing θ

• This can be done by evaluating the quantile function (inverse
CDF) of the Beta(32, 9) distribution at the values 0.025 and
0.975

• Although neither the Beta CDF nor its inverse is available in
closed form, we can easily calculate these quantities on a
computer (which we will do in lab) and determine the 95%
posterior interval [0.644, 0.892] for θ
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Highest posterior density intervals

This is not the only way to construct a 95% interval:

This interval, [0.654, 0.899], is called the highest posterior density
interval, and is slightly different from the previous interval, which is
known as the central interval
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Confidence intervals vs. Posterior intervals

• So, when looking at what the Johns Hopkins study has to say
about survival probabilities for an infant born at 25 weeks
gestation, we obtained a confidence interval of [63.5%, 90.7%]
and a posterior interval of [65.4%, 89.9%]

• Qualitatively, these two intervals essentially agree, which is
reassuring since both approaches seem reasonable and both
are “95% intervals”

• Keep in mind, however, that the probabilities these two
intervals satisfy are quite different:
◦ The 95% for the confidence interval is a statement about
P{θ ∈ [L(X), U(X)]}, where θ is fixed and X is random

◦ The 95% for the posterior interval is a statement about
P{θ ∈ [L(x), U(x)]}, where θ is random and x is fixed
because we have conditioned on it
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Infant survival: 22 weeks

For the same study looking at infant survival at 22 weeks gestation
(where 0/29 survived), the posterior looks like:
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95% Central interval: [0.001, 0.116]
95% HPD interval: [0.000, 0.095]
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Crossover study

Finally, for our cystic fibrosis crossover trial in which 11/14
patients did better on the drug:
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95% Central interval: [0.519, 0.922]
95% HPD interval: [0.544, 0.938]
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Beta prior

• What about other priors besides the uniform?

• Specifically, let’s let the prior for θ follow a general Beta
distribution:

θ ∼ Beta(α, β)

(note that the uniform distribution is a special case of the
beta distribution, with α = β = 1)

• In this case, θ still follows a beta distributon:

θ|y ∼ Beta(y + α, n− y + β)
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Conjugacy

• This phenomenon, in which the posterior distribution has the
same parametric form as the prior distribution, is referred to
as conjugacy

• In this case, the beta distribution is said to be the conjugate
prior for the binomial likelihood, and is therefore particularly
convenient to work with

• We could of course apply Bayes rule and carry out Bayesian
inference with any prior, at least in principle, but using
conjugate priors makes the math and computing much easier
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Informative prior for premature birth data

• Let’s suppose that there had been some previous studies that
had suggested that the probability of survival for 25 weeks of
gestation was around 60%, and that it was rather unlikely to
be close to 0% or 100%

• We might propose, in this situation, a θ ∼ Beta(7, 5) prior

• Note that conjugacy is often helpful when thinking about
priors: this is the same as the posterior we would obtain with
a uniform prior after seeing 6 successes and 4 failures
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25 week survival with θ ∼ Beta(7, 5)

The prior and posterior for θ ∼ Beta(7, 5):
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Here, the gray distribution is our previous posterior based on the
uniform prior
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25 week survival with θ ∼ Beta(20, 40)

Now consider what we happen if we chose a Beta(20, 40) prior:
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Posterior as compromise

• We can see, then, that the posterior distribution represents a
compromise between the prior and the likelihood

• Some additional insight into this “compromise” can be gained
by considering the posterior mean

• It can be shown that the mean of a beta distribution is
α/(α+ β)

• Thus, given a θ ∼ Beta(α, β) prior, the posterior mean is a
weighted average of the prior mean and the sample mean:

Mean(θ|x) = w
x

n
+ (1− w)

α

α+ β
,

where w = n/(α+ β + n)
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Sequential updating

• Finally, let’s suppose that the data from the infant survival
study were collected in two phases: in Phase I, we saw 17/21
infants survive, and in Phase II, we saw 14/18 survive (for a
total of 31/39)

• Suppose we started out with a uniform prior, then analyzed
the data after Phase I was complete, obtaining
θ|x1 ∼ Beta(18, 5)

• It would be rational to use this as our prior for the analysis of
Phase II

• If we do, we would start with a Beta(18, 5) prior and obtain
θ|x2 ∼ Beta(32, 9) – exactly the same posterior as before

• Indeed, we could have stopped and analyzed the data after
each observation, with each posterior forming the prior for the
next analysis; this is known as sequential updating
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Informative vs. non-informative priors

• Consider our two analyses of the 25-week survival data: one
used a uniform prior, while the other attempted to base a
prior on previous studies

• Generally speaking, the first prior may be thought of as
“non-informative”, in the sense that we are just trying to
represent a belief that, before seeing any data, all proportions
are equally likely

• The other prior, on the other hand, is “informative” in the
sense that it is explicitly intended to incorporate external
information

• Generally speaking, each type of prior serves different purposes
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Informative vs. non-informative priors (cont’d)

• Informative priors are likely more useful for decision making at
the individual or organizational level

• Non-informative priors, on the other hand, are useful for
communicating results and findings based solely on the data

• To emphasize this point, non-informative priors are sometimes
called reference priors, as their intent is to provide a universal
reference point regardless of actual prior belief

• It is worth noting, however, that the term “non-informative”
is somewhat misleading, as all priors contain some information
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• Treating θ as a random quantity, Bayesian inference uses
Bayes rule to update prior beliefs f(θ) into posterior beliefs
f(θ|x) based on the data

• To carry out a Bayesian analysis, we must specify both a
likelihood f(x|θ) and a prior f(θ)

• For binomial data, if θ ∼ Beta(α, β),

θ|x ∼ Beta(α+ x, β + n− x)

• There is a basic division among priors between “reference”
priors and “informative” priors
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