

Analysis review, Part 2

Patrick Breheny

August 31

Introduction

Our analysis review continues today with three more topics:

- O , o notation: An extremely useful tool
- Taylor series expansions: Probably the single most useful mathematical tool in all of statistics
- Uniform convergence: An often poorly understood topic that not everyone is familiar with

O-notation: Introduction

- When investigating the asymptotic behavior of functions, it is often convenient to replace unwieldy expressions with compact notation
- For example, suppose we have a term like

$$\frac{\exp\left\{-\frac{1}{2}\|\mathbf{x} - \boldsymbol{\mu}\|^2\right\}}{2\sqrt{n}\theta \int_0^\infty g(s)ds};$$

if we're investigating what this looks like asymptotically (with respect to n), maybe we can just replace this with c/\sqrt{n} , where c is a constant

- If the term ends up going away as $n \rightarrow \infty$, why bother writing down all those extra terms over and over again?

O-notation

- A very useful companion of o -notation is O -notation, which denotes whether or not quantities are bounded as $n \rightarrow \infty$
- **Definition:** A sequence of numbers X_n is said to be $O(1)$ if there exist M and n_0 such that

$$|X_n| < M$$

for all $n > n_0$. Likewise, X_n is said to be $O(r_n)$ if there exist M and n_0 such that for all $n > n_0$,

$$\left| \frac{X_n}{r_n} \right| < M.$$

- Note that $X_n = O(1)$ does not necessarily mean that X_n is bounded, just that it is eventually bounded

o-notation

- Its companion is *o*-notation
- **Definition:** A sequence of numbers X_n is said to be $o(1)$ if it converges to zero. Likewise, X_n is said to be $o(r_n)$ if

$$\frac{X_n}{r_n} \rightarrow 0$$

as $n \rightarrow \infty$.

- For example, the expression on slide 3 is $o(1)$, and $O(n^{-1/2})$

Algebra of O , o notation

O , o -notation are useful in combination because simple rules govern how they interact with each other

Theorem: For $a \leq b$:

$$O(1) + O(1) = O(1)$$

$$o(1) + o(1) = o(1)$$

$$o(1) + O(1) = O(1)$$

$$O(1)O(1) = O(1)$$

$$O(1)o(1) = o(1)$$

$$\{1 + o(1)\}^{-1} = O(1)$$

$$O\{O(1)\} = O(1)$$

$$o\{O(1)\} = o(1)$$

$$o(r_n) = r_n o(1)$$

$$O(r_n) = r_n O(1)$$

$$O(n^a) + O(n^b) = O(n^b)$$

$$o(n^a) + o(n^b) = o(n^b)$$

Remarks

- O, o “equations” are meant to be read left-to-right; for example, $O(\sqrt{n}) = O(n)$ is a valid statement, but $O(n) = O(\sqrt{n})$ is not
- **Exercise:** Determine the order of

$$n^{-2} \left\{ (-1)^n \sqrt[n]{2} + \left(1 + \frac{1}{n}\right)^n \right\}.$$

- As we will see in a week or two, there are stochastic equivalents of these concepts, involving convergence in probability and being bounded in probability
- As such, we won't do a great deal with O, o -notation right now, but will use the stochastic equivalents extensively

Taylor series: Introduction

- It is difficult to overstate the importance of Taylor series expansions to statistical theory, and for that reason we are now going to cover them fairly extensively
- In particular, Taylor's theorem comes in a number of versions, and it is worth knowing at least two of them, since they both come up in statistics quite often
- Furthermore, students often have not seen the multivariate versions of these expansions

Taylor's theorem

- **Theorem (Taylor):** Suppose n is a positive integer and $f : \mathbb{R} \rightarrow \mathbb{R}$ is n times differentiable at a point x_0 . Then

$$f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x, x_0),$$

where the remainder R_n satisfies

$$R_n(x, x_0) = o(|x - x_0|^n) \text{ as } x \rightarrow x_0$$

- You could also say that R_n is $O(|x - x_0|^{n+1})$
- This form of the remainder is sometimes called the *Peano* form

Taylor's theorem: Lagrange form

- **Theorem (Taylor):** If $f^{(n+1)}$ exists on the open interval and $f^{(n)}$ is continuous on the closed interval between x and x_0 , then there exists $x^* \in (x, x_0)$:

$$R_n(x, x_0) = \frac{f^{(n+1)}(x^*)}{(n+1)!} (x - x_0)^{(n+1)}.$$

- This is also known as the *mean-value form*, as the mean value theorem is the central idea in proving the result
- Note that we have a simpler expression, but at the cost of stronger assumptions: $f^{(n+1)}$ must exist along the entire interval from x to x_0 , not just at the point x_0

Multivariable forms of Taylor's theorem

- We now turn our attentions to the multivariate case
- For the sake of clarity, I'll present the first- and second-order expansions for each of the previous forms, rather than abstract formulae involving $f^{(n)}$
- Lastly, I'll provide a form that goes out to third order, although higher orders are less convenient as they can't be represented compactly using vectors and matrices

Taylor's theorem

- **Theorem (Taylor):** Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable at a point \mathbf{x}_0 . Then

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + o(\|\mathbf{x} - \mathbf{x}_0\|)$$

- **Theorem (Taylor):** Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is twice differentiable at a point \mathbf{x}_0 . Then

$$\begin{aligned} f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \\ \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + o(\|\mathbf{x} - \mathbf{x}_0\|^2) \end{aligned}$$

Taylor's theorem: Lagrange form

- **Theorem (Taylor):** Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$, there exists \mathbf{x}^* on the line segment connecting \mathbf{x} and \mathbf{x}_0 such that

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}_0)$$

- **Theorem (Taylor):** Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is twice differentiable on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$, there exists \mathbf{x}^* on the line segment connecting \mathbf{x} and \mathbf{x}_0 such that

$$\begin{aligned} f(\mathbf{x}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^\top (\mathbf{x} - \mathbf{x}_0) + \\ \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^\top \nabla^2 f(\mathbf{x}^*) (\mathbf{x} - \mathbf{x}_0) \end{aligned}$$

- “ \mathbf{x}^* on the line segment connecting \mathbf{x} and \mathbf{x}_0 ” means that there exists $w \in [0, 1]$ such that $\mathbf{x}^* = w\mathbf{x} + (1 - w)(\mathbf{x}_0)$

Taylor's theorem: Third order

Theorem (Taylor): Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is three times differentiable on $N_r(\mathbf{x}_0)$. Then for any $\mathbf{x} \in N_r(\mathbf{x}_0)$, there exists \mathbf{x}^* on the line segment connecting \mathbf{x} and \mathbf{x}_0 such that

$$\begin{aligned} f(\mathbf{x}) &= f(\mathbf{x}_0) + \sum_{j=1}^d \frac{\partial f(\mathbf{x}_0)}{\partial x_j} (x_j - x_{0j}) \\ &+ \frac{1}{2} \sum_{j=1}^d \sum_{k=1}^d \frac{\partial^2 f(\mathbf{x}_0)}{\partial x_j \partial x_k} (x_j - x_{0j})(x_k - x_{0k}) \\ &+ \frac{1}{6} \sum_{j=1}^d \sum_{k=1}^d \sum_{\ell=1}^d \frac{\partial^3 f(\mathbf{x}^*)}{\partial x_j \partial x_k \partial x_{\ell}} (x_j - x_{0j})(x_k - x_{0k})(x_{\ell} - x_{0\ell}), \end{aligned}$$

where $\partial f(\mathbf{x}_0)/\partial x_j$ is shorthand for $\partial f(\mathbf{x})/\partial x_j$ evaluated at \mathbf{x}_0

Statistical convergence: Motivation

- Convergence is a very important concept in theoretical statistics; for example, we often know that

$$f_n(\theta) \rightarrow f(\theta);$$

here, I am using \rightarrow in an intentionally vague sense – we will talk more about probabilistic convergence in a few weeks

- For example, we might know that

$$\frac{1}{n} \sum_{i=1}^n (x_i - \theta)^2 - \sigma^2 \rightarrow 0$$

- From this, we often want to know: suppose $\hat{\theta} \rightarrow \theta$, does

$$\frac{1}{n} \sum_{i=1}^n (x_i - \hat{\theta})^2 - \sigma^2 \rightarrow 0?$$

Framing the issue

- In other words, does $f_n(\hat{\theta}) \rightarrow f(\theta)$ as $\hat{\theta} \rightarrow \theta$?
- We'll return to the probabilistic question later in the course; for now, let's discuss the problem in deterministic terms
- Suppose we have a sequence of functions f_1, f_2, \dots such that for all values of x , we have $f_n(x) \rightarrow f(x)$
- Our central question is whether the following holds or not:

$$\lim_{x \rightarrow x_0} \lim_{n \rightarrow \infty} f_n(x) = \lim_{n \rightarrow \infty} \lim_{x \rightarrow x_0} f_n(x)$$

Counterexample

- Unfortunately, the answer is no – in general, this is not true
- For example:

$$f_n(x) = \begin{cases} x^n & x \in [0, 1] \\ 1 & x \in (1, \infty) \end{cases}$$

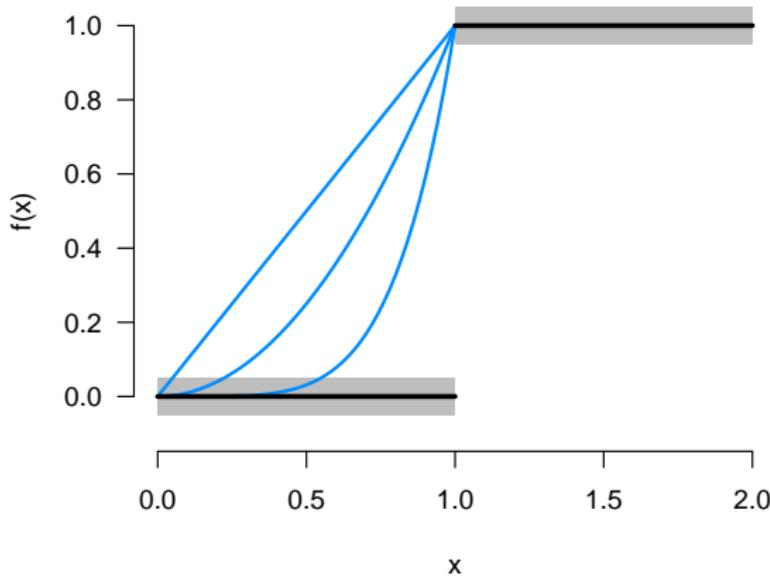
- We have

$$\lim_{x \rightarrow 1^-} \lim_{n \rightarrow \infty} f_n(x) = 0$$

$$\lim_{n \rightarrow \infty} \lim_{x \rightarrow 1^-} f_n(x) = 1$$

Illustration

The underlying issue is that f_n doesn't really converge to f in the sense of always lying within $\pm\epsilon$ of it:



Uniform convergence

- The relationship between f_n and f is one of *pointwise convergence*; we need something stronger
- **Definition:** A sequence of function f_1, f_2, \dots , *converges uniformly* on a set E to a function f if for every $\epsilon > 0$ there exists N such that $n > N$ implies

$$|f_n(x) - f(x)| < \epsilon$$

for all $x \in E$

- **Corollary:** $f_n \rightarrow f$ uniformly on E if and only if

$$\sup_{x \in E} |f_n(x) - f(x)| \rightarrow 0.$$

Why this is useful

- This is useful because with uniform convergence, we can reach the kind of conclusion we originally sought
- **Theorem:** Suppose $f_n \rightarrow f$ uniformly, with f_n continuous for all n . Then $f_n(\mathbf{x}) \rightarrow f(\mathbf{x}_0)$ as $\mathbf{x} \rightarrow \mathbf{x}_0$.
- Note that this argument does not work without uniform convergence

Extensions

- The theorem on the previous page can actually be made somewhat stronger:
- **Theorem:** Suppose $f_n \rightarrow f$ uniformly on E and that $\lim_{x \rightarrow x_0} f_n(x)$ exists for all n . Then for any limit point x_0 of E ,

$$\lim_{x \rightarrow x_0} \lim_{n \rightarrow \infty} f_n(x) = \lim_{n \rightarrow \infty} \lim_{x \rightarrow x_0} f_n(x).$$

- **Corollary:** If $\{f_n\}$ is a sequence of continuous functions on E and if $f_n \rightarrow f$ uniformly on E , then f is continuous on E .

Related concepts

- There are number of related concepts similar to uniform convergence
- **Definition:** A function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is called *uniformly continuous* if for all $\epsilon > 0$, there exists $\delta > 0$ such that for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{y}\| < \delta$, we have $|f(\mathbf{x}) - f(\mathbf{y})| < \epsilon$.
- For example, $f(x) = x^2$ is uniformly continuous over $[0, 1]$ but not over $[0, \infty)$
- **Definition:** A sequence X_1, X_2, \dots of random variables is said to be *uniformly bounded* if there exists M such that $|X_n| < M$ for all X_n .