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Introduction

Our analysis review continues today with three more topics:
e (O, o notation: An extremely useful tool

e Taylor series expansions: Probably the single most useful
mathematical tool in all of statistics

e Uniform convergence: An often poorly understood topic that
not everyone is familiar with
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O riziien Definitions

Rules of O notation

O-notation: Introduction

Patrick Breheny

When investigating the asymptotic behavior of functions, it is
often convenient to replace unwieldy expressions with
compact notation

For example, suppose we have a term like

exp{—zx— p[?}
2ynb [5° g(s)ds
if we're investigating what this looks like asymptotically (with

respect to n), maybe we can just replace this with ¢/+/n,
where ¢ is a constant

If the term ends up going away as n — oo, why bother writing
down all those extra terms over and over again?
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O riziien Definitions

Rules of O notation

O-notation

e A very useful companion of o-notation is O-notation, which
denotes whether or not quantities are bounded as n — oo

e Definition: A sequence of numbers X, is said to be O(1) if
there exist M and ng such that

| Xn| < M
for all n > ng. Likewise, X, is said to be O(r,) if there exist
M and ng such that for all n > ny,

Xn

Tn

<M.

e Note that X,, = O(1) does not necessarily mean that X, is
bounded, just that it is eventually bounded
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Definitions

O notation

Uniform

o-notation

e |ts companion is o-notation

e Definition: A sequence of numbers X, is said to be o(1) if it
converges to zero. Likewise, X, is said to be o(r,,) if

X
= =0
Tn

as n — o0.

e For example, the expression on slide 3 is o(1), and O(n~1/2)
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O notation

Taylor series e ns .
: 2 Rules of O notation
Uniform

Algebra of O, o notation

O, o-notation are useful in combination because simple rules
govern how they interact with each other
Theorem: For a < b:

O(1) +0(1) =0(1) o{o(1)} =0Q)
o(1) +o(1) = o(1) o{O(1)} = o(1)
o(1)+0(1) =0() o(rp) = rpo(1)
O(1)0(1) =0(1) O(rn) = rp,O(1)
O(1)o(1) = o(1) O(n%) 4+ 0(n®) = O(n?)
{14+0(1)} ' =0(1) o(n®) + o(n®) = o(n®)
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O riziien Definitions

Rules of O notation

RENEILS
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O, 0 "equations” are meant to be read left-to-right; for
example, O(y/n) = O(n) is a valid statement, but
O(n) = O(y/n) is not

Exercise: Determine the order of
n2{(-1)" 2+ 1+ Hr}

As we will see in a week or two, there are stochastic
equivalents of these concepts, involving convergence in
probability and being bounded in probability

As such, we won’t do a great deal with O, o-notation right
now, but will use the stochastic equivalents extensively
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Single variable
Multivariate

Taylor series: Introduction

o |t is difficult to overstate the importance of Taylor series
expansions to statistical theory, and for that reason we are
now going to cover them fairly extensively

e |n particular, Taylor's theorem comes in a number of versions,
and it is worth knowing at least two of them, since they both
come up in statistics quite often

e Furthermore, students often have not seen the multivariate
versions of these expansions
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. Single variable
Taylor series g

Uniform co

Taylor's theorem

e Theorem (Taylor): Suppose n is a positive integer and
f R — R is n times differentiable at a point zg. Then

) (o
f(i’) = Z fk—g())(:l" - mo)k + Rn(l'a:l"())?
k=0 ’

where the remainder R,, satisfies
Ry (z, ) = o]z — x0]™) as x — xg

e You could also say that R,, is O(|z — zo|" ")
e This form of the remainder is sometimes called the Peano form
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Single variable

Taylor serie )
4 Multivariate

Uniform c

Taylor's theorem: Lagrange form
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Theorem (Taylor): If f(»*1) exists on the open interval and
f() is continuous on the closed interval between z and g,
then there exists z* € (z, z0):

£ @)

o) = T

(x — :Uo)(”+1).

This is also known as the mean-value form, as the mean value
theorem is the central idea in proving the result

Note that we have a simpler expression, but at the cost of
stronger assumptions: f("*1) must exist along the entire
interval from x to xg, not just at the point zg
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Taylor series

. Multivariate
Uniform con C

Multivariable forms of Taylor's theorem

e \We now turn our attentions to the multivariate case

e For the sake of clarity, I'll present the first- and second-order
expansions for each of the previous forms, rather than
abstract formulae involving f(™

e Lastly, I'll provide a form that goes out to third order,
although higher orders are less convenient as they can't be
represented compactly using vectors and matrices
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O notation
Taylor series expansions

. Multivariate
Uniform convergence

Taylor's theorem

e Theorem (Taylor): Suppose f : R* — R is differentiable at a
point xg. Then

f(x) = f(x0) + Vf(x0)" (x = %0) + o([x = x0l])

e Theorem (Taylor): Suppose f: R — R is twice
differentiable at a point xg. Then

f(x) = f(x0) + Vf(x0) (x — x0)+
5(x = x0) "V f (%0) (x — x0) + o(||x — x0]*)
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Single variable

. Multivariate
Uniform cony

Taylor's theorem: Lagrange form

e Theorem (Taylor): Suppose f : R? — R is differentiable on
Ny (xp). Then for any x € N,.(x¢), there exists x* on the line
segment connecting x and xg such that

f(x) = f(x0) + VF(x")" (x — %)

e Theorem (Taylor): Suppose f : RY — R is twice
differentiable on N, (x¢). Then for any x € N,(xp), there
exists x* on the line segment connecting x and x( such that

f(x) = f(x0) + Vf(x0) " (x — x0)+
$(x —x0) V2 f(x*)(x — x0)

e “x* on the line segment connecting x and xp" means that
there exists w € [0, 1] such that x* = wx + (1 — w)(xg)
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O notation
Taylor series ex ns

. Multivariate
Uniform con

Taylor's theorem: Third order

Theorem (Taylor): Suppose f : R? — R is three times
differentiable on N, (xp). Then for any x € N,(xg), there exists x*
on the line segment connecting x and xg such that
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O notatiol
Taylor series expansions

Uniform convergence

Statistical convergence: Motivation
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Convergence is a very important concept in theoretical
statistics; for example, we often know that

fn(0) — £(0);

here, | am using — in an intentionally vague sense — we will
talk more about probabilistic convergence in a few weeks
For example, we might know that

S|

Z:(:lcZ — 0?2020
i=1

From this, we often want to know: suppose 6 — 6, does

A

(z; — 0)* —0? = 07

31
=

=1
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O notatiol
Taylor series expansions

Uniform convergence

Framing the issue

In other words, does f,,(6) — f(6) as § — 07

We'll return to the probabilistic question later in the course;
for now, let's discuss the problem in deterministic terms

Suppose we have a sequence of functions fi, fa, ... such that
for all values of z, we have f,(z) — f(x)

Our central question is whether the following holds or not:

i Jim o) = Jin i £ (2
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Taylo ns
Uniform convergence

Counterexample

e Unfortunately, the answer is no — in general, this is not true

e For example:

M@= e (1,00)

{x” z € [0,1]

e We have

lim lim f,(x)=0

z—1— 00

lim lim f,(z) =1

n—00 z—y1-
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Taylor series e ns
Uniform convergence

[llustration

The underlying issue is that f,, doesn't really converge to f in the
sense of always lying within +e of it:

1.0

0.8 —

0.6 —

f(x)

0.4 —

0.2 +

0.0 —~
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Uniform convergence

Uniform convergence

e The relationship between f,, and f is one of pointwise
convergence; we need something stronger

e Definition: A sequence of function f1, fo,..., converges
uniformly on a set E to a function f if for every € > 0 there
exists N such that n > N implies

[fnl(z) = f(z)] <€

forallz € E
e Corollary: f, — f uniformly on E if and only if

sup [ fn(z) — f(z)] = 0.
zel
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O not
Taylor series expan s

Uniform convergence

Why this is useful

e This is useful because with uniform convergence, we can reach
the kind of conclusion we originally sought

e Theorem: Suppose f, — f uniformly, with f,, continuous for
all n. Then f,(x) — f(x0) as x — Xp.

e Note that this argument does not work without uniform
convergence
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Taylo es ns
Uniform convergence

Extensions

e The theorem on the previous page can actually be made
somewhat stronger:

e Theorem: Suppose f, — f uniformly on E and that
limg_,4, fn(x) exists for all n. Then for any limit point z( of
E,

i Jim () = Jinlim (o).

e Corollary: If {f,} is a sequence of continuous functions on E
and if f, — f uniformly on E, then f is continuous on E.
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O notation
Taylor series expansions
Uniform convergence

Related concepts

There are number of related concepts similar to uniform
convergence

Definition: A function f : RY — R is called uniformly
continuous if for all € > 0, there exists § > 0 such that for all

x,y € R?: [lx —y <4, we have | f(x) — f(y)| <e

For example, f(z) = 22

not over [0, 00)

is uniformly continuous over [0, 1] but

Definition: A sequence X7, X5, ... of random variables is
said to be uniformly bounded if there exists M such that
| X, < M for all X,,.
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