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Introduction

• In our previous lecture, we introduced the idea of conditioning
in order to obtain a distribution free of nuisance parameters
• Today, our goal will also be to create a distribution free of
nuisance parameters, although this time, we will be
accomplishing that goal by (in one way or another)
constructing a marginal distribution without nuisance
parameters
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Definition

• As in the previous lecture, suppose we can transform the data
x into v and w
• We will again be factoring the likelihood, only this time it will
be the marginal distribution that is free of nuisance
parameters:

p(x|θ,η) = p(v|θ)p(w|v,θ,η);

the first term, L(θ) = p(v|θ), is known as the marginal
likelihood
• Note that this term is free of nuisance parameters and that,
like the conditional likelihood, is a true likelihood,
corresponding to an actual distribution of observed data
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Example: Normal distribution

• As an example, suppose Xi
iid∼ N(µ, σ2)

• We have already seen that the (profile) MLE, 1
n

∑
i(xi − x̄)2,

is biased
• Consider instead the transformation

s2 = 1
n− 1

∑
i

(xi − x̄)2

• From ordinary normal distribution theory, we know that

(n− 1)s2 ∼ σ2χ2
n−1
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Example: Normal distribution (cont’d)

• This marginal likelihood is

`(σ2) = −n− 1
2 log σ2 − (n− 1)s2

2σ2 ;

thus σ̂2 = s2, an unbiased estimate
• Note that x̄ ∼ N(µ, σ2/n) and x̄ ⊥⊥ s2, so in terms of
likelihood, we have

L(µ, σ2) = L(µ, σ2|x̄)L(σ2|s2)

• As with conditional likelihood, there is the possibility that we
are losing information by ignoring the first part of the
likelihood
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Remarks

• In this scenario, are we losing information? Does x̄ contain
any information about σ2?
• Certainly, if we had a repeated sample with several means,
this would tell us something about σ2

• With a single sample, however, it is hard to see how x̄ could
tell us anything about σ2

Patrick Breheny University of Iowa Likelihood Theory (BIOS 7110) 6 / 35



Introduction
Linear mixed models

Nonlinear models

Definition
Neyman-Scott problem
REML

Neyman-Scott problem

• As another example, consider the Neyman-Scott problem:
Yi1, Yi2 ∼ N(µi, σ

2)
• If we apply the transformation

vi = (yi1 − yi2)/
√

2,

then vi
iid∼ N(0, σ2), a marginal distribution that is free of the

nuisance parameters µi

• The marginal log-likelihood is therefore

`(σ2) ∝ −n2 log σ2 − 1
2σ2

∑
i

v2
i
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Marginal likelihood MLE

• The marginal likelihood therefore yields the estimate

σ̂2 = 1
n

∑
i

v2
i

• This is equal to RSS/n, the unbiased estimator from a
classical ANOVA analysis
• Again, recall that the (profile) MLE was RSS/(2n), not only

biased but inconsistent
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Illustration
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Information loss

• As the figure indicates, we are certainly losing information
(compared to the oracle) by not knowing the µi parameters;
indeed, the information loss is 50%
• A more fair comparison can be made between this marginal
likelihood and a mixed model (more on these later) assuming
that µi

iid∼ N(0, τ2)
• In this case, it can be shown that the proportion of
information lost is

1
1 + (1 + 2τ2/σ2)2 ;

when τ2 = σ2, this loss is 10%
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REML

• Lastly, suppose we are fitting an ordinary linear regression
model; as we have seen, the MLE for σ2, RSS/n, is biased
• An alternative approach using marginal likelihood is to apply
the transformation

v = [I−X(X>X)−1X>]y

• The transformed data v has distribution
N(0, σ2[I−X(X>X)−1X>]), which is
◦ Free of β
◦ Yields the marginal likelihood MLE

σ̂2 = RSS/(n− p)

• This is known as “restricted maximum likelihood” (REML)
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Marginalization as a general technique

• Although possible to apply marginal likelihood in standard
settings (as we have just done), its most common use is in
“mixed” models
• Deriving marginal distributions from joint distributions is of
course a standard tool in statistics:

p(x) =
∫
p(x, y) dy

• What we are attempting to do here, however, is to eliminate
nuisance parameters by marginalizing
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Marginalization and Bayesian statistics

• As we remarked in an earlier lecture, if the nuisance
parameters have a distribution (as they do in Bayesian
statistics), then standard tools apply
• Again, this is a major advantage of the Bayesian approach to
inference . . . can it be applied outside of purely Bayesian
frameworks?
• Indeed it can, if we are willing to treat the nuisance
parameters not as parameters in the traditional frequentist
sense, but as unobserved random variables
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• In doing so, these unobserved random variables must be
supplied with a distribution
• Obviously, this adds a layer of assumptions to our model, but
without it, there is no way to integrate out the nuisance
parameters
• Such a model, in which certain parameters are treated as
unobserved random variables and others as unknown
constants, is known as a “mixed” model
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Motivating example

• Mixed models will be covered much more comprehensively in
longitudinal data analysis (BIOS 7310), but we’ll take a brief
look at them here in order to see how marginal likelihood can
be applied in general modeling settings
• Let’s consider the model

yij
⊥⊥∼ N(αi + xijβ, σ

2),

and assume we are interested in estimating both β and σ
• Such a model might arise if there were repeated
measurements on a subject, within a family, etc.
• As in the Neyman-Scott problem, the number of parameters is
increasing with the sample size, which poses a challenge to
maximum likelihood
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• How can we proceed with a marginal likelihood approach?
• In the case of linear models, we can use known properties of
the multivariate normal distribution to work everything out in
closed form
• Specifically, if we are willing to assume that αi

iid∼ N(µ, τ2),
with {ai} and the residual errors mutually independent, then
we can write our model as

yij = µ+ xijβ + εij ,

where εij has mean zero and variance σ2 + τ2, as it
incorporates both the between-group variability (from αi) and
the within-group variability
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• The εij terms, however, are not independent, as the αi term
is shared across multiple observations
• This gives rise to the following correlation structure (assuming
consecutive observations are paired):

Vε =


σ2 + τ2 τ2 0 0 . . .
τ2 σ2 + τ2 0 0 . . .
0 0 σ2 + τ2 τ2 . . .
0 0 τ2 σ2 + τ2 . . .
...

...
...

... . . .


• Marginally, we have y ∼ N(µ+ xβ,V), where V = Vε
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• As we’ve seen in our homework assignment, however, we can
estimate β in closed form regardless of what structure the
variance has:

β̂ = (X>WX)−1X>Wy,

where W = V−1

• This, of course, assumes that V is known
• In our case, the structure of V is known (or at least
assumed), but the values of σ2 and τ2 are not
• Thus, in order to fit this model, we will need to proceed in an
iterative fashion, updating β given τ2 and σ2, then updating
τ2 and σ2 given β, and so on
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• So, how well does this approach work?
• Let’s introduce some competing ideas for how to analyze this
data
• Naïve: Simply regress y on x, don’t even worry about αi

• Profile: Ordinary least squares with all n+ 2 parameters
({αi}ni=1, β, and σ)
• Oracle: Gets to use the true {αi}ni=1 values
• Differencing: Analyze vi = yi1 − yi2, which causes the αi

term to cancel; note that this is also a marginal likelihood
approach, but doesn’t make any distributional assumptions
about {αi}ni=1 (note that this is not so easily extended beyond
the paired setting)
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Results

I simulated n = 100 pairs of observations, with σ2 = τ2 = β = 1:

β̂ SE(β̂) σ̂2

Oracle 1.00 0.23 0.93
Marginal 0.89 0.29 0.98
Differencing 1.14 0.34 0.97
Profile 1.14 0.34 0.48
Naïve 0.66 0.33 1.89
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Remarks

• In terms of estimating β, all methods produce reasonable
estimates (the naïve approach looks bad in this particular
simulation, but it isn’t biased)
• However, the marginal likelihood mixed model results in the
most accurate (lowest SE) estimate, except for the oracle
• As we have seen, the profile likelihood approach substantially
underestimates σ2

• As we might expect, the naïve approach substantially
overestimates σ2; all other methods produce reasonable
estimates
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Changing the data generating process

• This looks very good for marginal likelihood – and indeed, it is
a very effective and widely used approach in situations like this
• However, it is important to keep in mind that it comes at the
expense of added assumptions that may or may not be true
• For example, we have assumed that the distribution of αi is

independent of xij

• However, what if xij
⊥⊥∼ N(αi, 1)?
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Results, part 2

In this case, the mixed model’s assumptions are wrong and the
resulting coefficient estimate is biased (here, n = 1, 000):

β̂ SE(β̂) σ̂2

Oracle 1.00 0.02 0.98
Marginal 1.42 0.02 1.08
Differencing 1.04 0.03 0.94
Profile 1.04 0.03 0.47
Naïve 1.49 0.02 1.44
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Introduction to nonlinear mixed models

• This same idea can be extended to nonlinear models as well
• The big difference, however, is that without the nice
properties of the multivariate normal distribution, we cannot
simply derive the marginal distribution in closed form
• Instead, we will have to rely on a numeric algorithm to
approximate the integral
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Non-quadrature approaches

• You should be somewhat familiar with this idea from Bayesian
methods, as numeric integration is ubiquitous in Bayesian
analysis
• Monte Carlo approaches are indeed one way to integrate out
the random effects
• Another approach is the trapezoid rule, approximating the
integral by breaking it up into a large number of little
trapezoids
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Gaussian quadrature

• However, a more widely used method for mixed models is
something called Gaussian quadrature
• The basic idea of Gaussian quadrature is to approximate an
integral with a weighted sum:

∫ b

a
f(x)p(x) dx ≈

K∑
k=1

wkf(zk)

• The cleverness of Gaussian quadrature is to choose the
weights {wk} and focal points (or “abscissas”) {zk} so that
this approximation is as accurate as possible
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Brief theory of quadrature

• The theory of Gaussian quadrature, while rather elegant, is
beyond the scope of this course
• Nevertheless, I’ll share the result of one theorem (without
proof) so that you can get a sense of how well it works
• Theorem: For any absolutely continuous distribution, there
exist positive weights {wk}Kk=1 and points {zk}Kk=1 such that
the quadrature formula is exact whenever f is a polynomial of
degree 2K + 1 or lower.
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Computation of points and weights

• Solving for these points and weights, of course, is not trivial,
but for common probability distributions p(x), the problem
has already been solved by long-dead brilliant mathematicians
• Gauss-Legendre quadrature gives the points and weights for
the uniform distribution, Gauss-Laguerre for the gamma
distributions, Gauss-Jacobi the beta distribution, and so on
• The most widely used in statistics are the Gauss-Hermite
polynomials, which correspond to the normal distribution
• Several R packages provide these points and weights; I tend to
use GHrule from the lme4 package
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Example: Variance of the median

• If Xi
iid∼ N(0, 1), with n odd, the sample median has density

p(x) = n!
m!m!Φ(x)m{1− Φ(x)}mφ(x),

where m = (n− 1)/2
• By symmetry, the expected value of the median is zero, but
the variance is not easy to calculate
• This is therefore a natural candidate for a numerical method
such as quadrature:

VX(m+1) =
∫
x2p(x) dx =

∫
f(x)φ(x) dx

≈
K∑

k=1
wkf(xk)
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Results

• We could also approximate this result with Monte Carlo
integration (simulate a sample of normal variables, take the
median, repeat thousands of times, and calculate the
variance) or with asymptotic theory, which says that the
variance should be about π/(2n)
• Results for n = 11:

Variance

Monte Carlo (N = 100, 000) 0.1368
Asymptotic 0.1428
Gauss-Hermite (K = 20) 0.1476
Gauss-Hermite (K = 100) 0.1372
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A mixed effects logistic regression

• To see how this works in statistical modeling, let’s consider
the binary analog of our earlier model:

log πij

1− πij
= µ+ xijβ + αi,

where again we will assume that αi
iid∼ N(0, τ2)

• Letting αi = τwi, wi
iid∼ N(0, 1), the marginal likelihood is

L(β, µ, τ2) =
n∏

i=1

∫ {
mi∏
j=1

p(yij |xij , αi, β, µ)
}
p(αi|τ2) dαi

=
n∏

i=1

∫
exp

{
mi∑
j=1

log p(yij |xij , τwi, β, µ)
}
φ(wi) dwi
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Approximate marginal likelihood

• Having now written the integral in the form
∫
f(x)φ(x) dx,

we can apply Gauss-Hermite quadrature:

L(β, µ, τ2) ≈
n∏

i=1

K∑
k=1

wk exp
{

mi∑
j=1

log p(yij |xij , τzk, β, µ)
}

• We now have the likelihood in a form that, while not
necessarily simple, is at least manageable in terms of taking
gradients to find the score and information
• This method is implemented in various software packages
such as glmer in R and PROC GLIMMIX in SAS, although
there are a variety of other numeric approximations available
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Simulation case study

• As we did with the linear models, let’s compare this marginal
likelihood approach with some other plausible ways of
analyzing this data
• Naïve: As before, ignore the αi effects completely and just fit
a standard logistic regression
• Profile: As before, fit a standard logistic regression with
n+ 1 parameters
• Conditional: The method we derived in the previous lecture,
where we form a conditional likelihood from pairs such that
yi1 + yi2 = 1
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Results

Simulation case study results (n = 1, 000):

β̂ SE

Naïve 0.82 0.05
Profile 2.17 0.16
Conditional 1.09 0.11
Marginal 0.93 0.07

As before, the data were simulated with β = τ2 = 1
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Remarks

• As we would expect from our earlier analytical look at this
problem, the profile MLE is biased upwards, while the naïve
MLE is biased downward (somewhat)
• The conditional and marginal likelihood approaches both look
reasonable, although as before, the marginal likelihood mixed
model has a somewhat smaller SE (primarily due to making
stronger assumptions, of course)
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