

Theorem: Suppose $f_n \rightarrow f$ uniformly, with f_n continuous for all n . Then $f_n(\mathbf{x}) \rightarrow f(\mathbf{x}_0)$ as $\mathbf{x} \rightarrow \mathbf{x}_0$.

Proof. Let $\epsilon > 0$.

$$\textcircled{1} \quad \exists N : n > N \implies \sup_x |f_n(\mathbf{x}) - f(\mathbf{x})| < \frac{\epsilon}{2} \quad \text{Def. Uniform convergence}$$

$$\textcircled{2} \quad \exists \delta : \|\mathbf{x} - \mathbf{x}_0\| < \delta \implies |f(\mathbf{x}) - f(\mathbf{x}_0)| < \frac{\epsilon}{2} \quad f \text{ is continuous}$$

Therefore, for $n > N$ and any $\mathbf{x} \in N_\delta(\mathbf{x}_0)$, we have

$$\begin{aligned} |f_n(\mathbf{x}) - f(\mathbf{x}_0)| &= |f_n(\mathbf{x}) - f(\mathbf{x}) + f(\mathbf{x}) - f(\mathbf{x}_0)| \\ &\leq |f_n(\mathbf{x}) - f(\mathbf{x})| + |f(\mathbf{x}) - f(\mathbf{x}_0)| \quad \text{Triangle inequality} \\ &< \sup_x |f_n(\mathbf{x}) - f(\mathbf{x})| + \frac{\epsilon}{2} \quad \textcircled{2} \\ &< \epsilon \quad \textcircled{1} \end{aligned}$$

□