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Introduction

e We now turn to the middle part of this course, where we will
take these tools that we have learned and apply them to prove
various theoretical properties of likelihood

e For the most part, we will try to make as few assumptions as
possible about the probability model we are using

e However, the theoretical properties of likelihood turn out to be
particularly simple and straightforward if the probability model
falls into a class of models known as exponential families

e Today we will cover the idea behind exponential families, see
why they are particularly convenient for likelihood, and discuss
some extensions of the family
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History

e First, a bit of history

e In the 19th and early 20th centuries, statistical theory and
practice was almost exclusively focused on classical parametric
models (normal, binomial, Poisson, etc.)

e Starting in the 1930s (but taking a long time to be fully
appreciated), it became apparent that all of these parametric
models have a common construction (the exponential family)
and unified theorems can be obtained that apply to all of them

e |n fact, as we will see today, this is not an accident — only
exponential families enjoy certain properties of mathematical
and computational simplicity
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Geometry of exponential families

e Suppose we have the “standard” Poisson distribution (p = 1):

po(z) = e_l/x!;

how can we go about constructing a family of distributions, all
using this as a starting point?
e Consider forming new distributions via exponential tilting:

B(18) = po(x)e™

e This isn't a proper distribution, hence the notation p(x|6), but
it would be if we determined the normalizing constant, which |
will denote exp{v ()}, and divide:

p(x]6) = po(x)e
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Poisson example

e Let's see how all this plays out for the Poisson distribution
e First, the normalizing constant:

V() =¢e -1
e The family of distributions is therefore
p(z|0) = exp{zb — e’} /z!,
or in terms of the usual Poisson parameterization,
p(zlf) = p*e"/xl,

where 6 = log
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Remarks on tilting

o Here we “tilted” the reference distribution py by €*, although
the tilting parameter did not turn out to be the same as the
“usual” parameter we would think of

e Similarly, some distributions are formed by tilting with a
function s(x) rather than x itself; for simplicity | will just
express the tilting as €%/

e Note that the tilt must be integrable, so in practice you can't
just combine any distribution with any tilting statistic — the
resulting distribution often can't be normalized
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Single parameter exponential family

A one-parameter exponential family therefore has the form

p(2]0) = exp{s — ¥(0) }po(z),

where

e @ is the natural parameter

® s is the natural statistic

e 1)(0) is the cumulant generating function, for reasons that we
will discuss shortly

® pg is the base or reference distribution, although it need not
be a proper distribution; for example, our Poisson derivation
would have been simpler if we had chosen py(z) = 1/z!
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Cumulant generating functions

e The cumulant generating function is simply the log of the
moment generating function
e Like moment generating functions, cumulant generating
functions yield the moments of a distribution, but unlike
MGFs, yield central moments:
o lts derivative evaluated at zero is the mean
o Second derivative evaluated at zero is the variance

o Higher order derivatives yield quantities related to the
skewness, kurtosis, etc.
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v and cumulants

e Note that for a distribution in the exponential family, the
moment generating function of the random variable s(X) is

M(t) = /etsesgpo(x) dz/e??)
= eV(t+0) /g9 (0)
e Thus, its cumulant generating function is ¥ (t 4+ 6) — ¥ (0),
although for moment-finding purposes, we can simply treat 1

itself as the cumulant generating function (i.e., its derivatives
still generate the desired cumulants)
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e |n particular,

e Note that these expressions provide the mean and variance of
the natural statistic (not necessarily the mean and variance of
X)
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Multi-parameter exponential families

o All of these concepts extend in a straightforward way to the
d-parameter exponential family:

p(z]|0) = exp{s'0 — 1(0)}po(z)

e For example, the Gamma distribution is a 2-parameter
exponential family:

p(ela, B) = explalog f — logT(a) + alog — )/
or, in terms of 8 = [—f3,al,s = [z,log z:

p(x]0) = exp{s'6 — [logT'(02) — 02 log(—61)]}
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Mean and variance

Analogous to the one-parameter case, we have

E(s) = Vy(0)

where E(s) is a d x 1 vector and V(s) isa d x d
variance-covariance matrix
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Repeated sampling

o Why are we interested in exponential tilting as opposed to
some other way of generating new distributions from a base
distribution?

e Let's consider what happens in the case of repeated sampling,

where 1,..., 2, p(z]0):

p(x/0) = Hexp{s 6 — (0)}po(z;)

=1

= exp{n[s' 0 — 1 (0)]}po(x),

where s =" s;/n
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Sufficiency

e In other words, the joint distribution of the repeated sample is
still in the same exponential family, just scaled up by a factor
of n

e In particular, a quick look at the factorization theorem will
show that s is a sufficient statistic for the exponential family

e Under repeated sampling, we easily obtain s as a sufficient
statistic

e Thus, no matter how large the sample, we can always reduce
the information it contains down into a d-dimensional vector
of means
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Pitman-Darmois-Koopmans Theorem

e As it turns out, only exponential families have this property, in
which the sufficient statistic remains of fixed dimension under
repeated sampling

o This result was shown for one-dimensional exponential families
by Fisher, who originally introduced the concepts of
sufficiency and exponential tilting

e Later, a trio of authors working independently in different
countries extended this result to multiparameter families; the
result is known as the Pitman-Darmois-Koopmans theorem
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Likelihood

e Furthermore, exponential families are particularly convenient
in terms of their likelihood

e The log-likelihood of any exponential family is simply
n[sT@ —1(0)] plus a constant, so its gradient is

VI(O]x) =5 — V()

and

0= (V) '(s)
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Example: Poisson

e Returning to the Poisson distribution, where s = = and
¥(0) = e, we have

and
6 = log z

e The inverse is not always so mathematically tractable,
however: for example in the gamma distribution, V) (0)
involves the digamma function, whose inverse is not available
in closed form
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Central limit theorem

e Furthermore, since the MLE is simply a function of the mean
in exponential families, it is particularly easy to derive its
limiting distribution

o Letting u = E(s), the central limit theorem tells us that

V(s — p) -5 N(0, V),

where V = V24(0)
e Thus, letting g denote the transformation 8 = g(u), we have

V(@ - 6%) -5 N(0, Vg(p) VVg(p))

by the delta method; keep in mind here that Vg and V are
both d x d matrices

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny

18 / 29



Repeated sampling

Estimation Estimation

Application to the Poisson case

e In the Poisson case, 1)(0) = ¢/ = i and g(u) = log 11, so
V(@ —0) % N(0,e79)
e Thus, 6 + 1.96\/e—é/n is an approximate 95% confidence

interval for 8, which we could transform to get a confidence
interval for u
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RENMES

e The maximum likelihood estimator is asymptotically normal
not only in exponential families, but in a much wider class of
models

e Specifically, we require only that the likelihood is a “smooth”
function of @, in a sense that we will discuss later

o We'll go into more details regarding likelihood-based
inference, confidence intervals, tests, etc., soon

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 20 /29



Curved exponential families

Adisienell tepites Exponential di on families

Introduction

e Until now, we have assumed that the dimension of 8 and s
was the same as the number of unknown parameters

e However, it can also be the case that the parameter space ®
is constrained somehow; for example if 8 is a function of 3,
with dim(B) =k <d

e In such cases the exponential family is no longer said to be
“full™ or “full rank”
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Curved vs flat exponential families

e How large an impact this makes on likelihood-based inference
depends on whether the function 6(3) is linear (“flat") or not
(“curved”)

o If there is a matrix M such that 8 = Mg, then

exp{s'0 —(0)} = exp{s'MpB — (MpB)}
=exp{s'B - P(B)}

in other words, we still have a regular exponential family,
albeit with reduced rank k& < d, new summary statistics §, and
a new normalizing function

e If (B) is a nonlinear function, however, things can be much
more complicated
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Example: Regression

o Flat exponential families come up quite often in regression
models, especially generalized linear models

e For example, we might observe Y; ~ Pois(6;), but impose a
model g(6;) = x; B, which restricts © to a lower-dimensional
subspace of R"

e If the systematic component of our model is 8 = X3 (i.e., we
assume a linear model with respect to the natural
parameters), then our exponential family is not curved

e In the GLM literature, this is known as the canonical link
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Example: Normal, known coefficient of variation

e As a simple example of a curved exponential family, suppose
x ~ N(pu, 62/1,2), where ¢, the coefficient of variation, is known

e The natural parameter and statistic are 2-dimensional, but
there is only one unknown parameter

e The parameter space forms a one-dimensional line curving
through R?:

[0}
o N A O ©
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Definition

e A variation on exponential tilting, and one that is often very
useful in statistical modeling, is to introduce a dispersion
parameter and tilt by exp{s"0/¢}

e The resulting model is then of the form

p(x|0, ¢) = exp {Lﬁ@}m(m, b)

¢ Note that the normalizing constant is now exp{(0)/¢}
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Mean and variance

e The primary motivation for doing this is to allow the variance
to be parameterized separately from the mean
e Specifically,
E(s) = Vi (0) =
V(s) = oV2(6) = ¢V (p);

you will derive these results in the next homework assignment
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Example: Poisson distribution

e In practice, the base distribution po(z, @) is often left
unspecified (or rather, implicitly specified)

e For example, by introducing a dispersion parameter into the
Poisson model, we now have the useful result that
V(X) = ¢u; instead of requiring that the variance equals the
mean, we can instead allow the model to accommodate over-
or under-dispersion

e However, po(z, ¢) is the function that satisfies

0

ad z0 — e
D exp {—}po(x, ¢) =1;
x=0 ¢

not so trivial to find
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Estimation

e Note that this does not actually affect estimation of 8, since
we still have 8 = (V1)) ~1(8)
e However, it does have two meaningful implications for
modeling:
o We cannot find the MLE of ¢
o We cannot compute likelihood ratios

e In practice, one typically uses some other estimation strategy,
such as method of moments, to obtain ¢
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Inference

e lts impact on likelihood-based inference, however, is not so
trivial to remedy

e In practice, what is often done is to simply replace ¢ with gﬁ in
the likelihood and treat the likelihood as though qu were a
known constant rather than an unknown parameter

e This approach (the “plug-in" likelihood) often works
reasonably well; however, by treating an unknown quantity as
a known one, we bias our inference towards being
overconfident (confidence intervals too narrow)
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