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Introduction

• We now turn to the middle part of this course, where we will
take these tools that we have learned and apply them to prove
various theoretical properties of likelihood

• For the most part, we will try to make as few assumptions as
possible about the probability model we are using

• However, the theoretical properties of likelihood turn out to be
particularly simple and straightforward if the probability model
falls into a class of models known as exponential families

• Today we will cover the idea behind exponential families, see
why they are particularly convenient for likelihood, and discuss
some extensions of the family
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History

• First, a bit of history
• In the 19th and early 20th centuries, statistical theory and

practice was almost exclusively focused on classical parametric
models (normal, binomial, Poisson, etc.)

• Starting in the 1930s (but taking a long time to be fully
appreciated), it became apparent that all of these parametric
models have a common construction (the exponential family)
and unified theorems can be obtained that apply to all of them

• In fact, as we will see today, this is not an accident – only
exponential families enjoy certain properties of mathematical
and computational simplicity
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Geometry of exponential families
• Suppose we have the “standard” Poisson distribution (µ = 1):

p0(x) = e−1/x!;

how can we go about constructing a family of distributions, all
using this as a starting point?

• Consider forming new distributions via exponential tilting:

p̃(x|θ) = p0(x)eθx

• This isn’t a proper distribution, hence the notation p̃(x|θ), but
it would be if we determined the normalizing constant, which I
will denote exp{ψ(θ)}, and divide:

p(x|θ) = p0(x)eθx−ψ(θ)
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Poisson example

• Let’s see how all this plays out for the Poisson distribution
• First, the normalizing constant:

ψ(θ) = eθ − 1

• The family of distributions is therefore

p(x|θ) = exp{xθ − eθ}/x!,

or in terms of the usual Poisson parameterization,

p(x|θ) = µxe−µ/x!,

where θ = logµ
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Remarks on tilting

• Here we “tilted” the reference distribution p0 by eθx, although
the tilting parameter did not turn out to be the same as the
“usual” parameter we would think of

• Similarly, some distributions are formed by tilting with a
function s(x) rather than x itself; for simplicity I will just
express the tilting as esθ

• Note that the tilt must be integrable, so in practice you can’t
just combine any distribution with any tilting statistic — the
resulting distribution often can’t be normalized
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Single parameter exponential family

A one-parameter exponential family therefore has the form

p(x|θ) = exp{sθ − ψ(θ)}p0(x),

where
• θ is the natural parameter
• s is the natural statistic
• ψ(θ) is the cumulant generating function, for reasons that we

will discuss shortly
• p0 is the base or reference distribution, although it need not

be a proper distribution; for example, our Poisson derivation
would have been simpler if we had chosen p0(x) = 1/x!
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Cumulant generating functions

• The cumulant generating function is simply the log of the
moment generating function

• Like moment generating functions, cumulant generating
functions yield the moments of a distribution, but unlike
MGFs, yield central moments:

◦ Its derivative evaluated at zero is the mean
◦ Second derivative evaluated at zero is the variance
◦ Higher order derivatives yield quantities related to the

skewness, kurtosis, etc.
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ψ and cumulants

• Note that for a distribution in the exponential family, the
moment generating function of the random variable s(X) is

M(t) =
∫
etsesθp0(x) dx/eψ(θ)

= eψ(t+θ)/eψ(θ)

• Thus, its cumulant generating function is ψ(t+ θ) − ψ(θ),
although for moment-finding purposes, we can simply treat ψ
itself as the cumulant generating function (i.e., its derivatives
still generate the desired cumulants)
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Mean and variance

• In particular,

E(S) = ψ̇(θ)
V(S) = ψ̈(θ)

• Note that these expressions provide the mean and variance of
the natural statistic (not necessarily the mean and variance of
X)
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Multi-parameter exponential families

• All of these concepts extend in a straightforward way to the
d-parameter exponential family:

p(x|θ) = exp{s⊤θ − ψ(θ)}p0(x)

• For example, the Gamma distribution is a 2-parameter
exponential family:

p(x|α, β) = exp{α log β − log Γ(α) + α log x− βx}/x

or, in terms of θ = [−β, α], s = [x, log x]:

p(x|θ) = exp{s⊤θ − [log Γ(θ2) − θ2 log(−θ1)]}
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Mean and variance

Analogous to the one-parameter case, we have

E(s) = ∇ψ(θ)
V(s) = ∇2ψ(θ),

where E(s) is a d× 1 vector and V(s) is a d× d
variance-covariance matrix
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Repeated sampling

• Why are we interested in exponential tilting as opposed to
some other way of generating new distributions from a base
distribution?

• Let’s consider what happens in the case of repeated sampling,
where x1, . . . , xn

iid∼ p(x|θ):

p(x|θ) =
n∏
i=1

exp{s⊤
i θ − ψ(θ)}p0(xi)

= exp{n[s̄⊤θ − ψ(θ)]}p0(x),

where s̄ =
∑

si/n
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Sufficiency

• In other words, the joint distribution of the repeated sample is
still in the same exponential family, just scaled up by a factor
of n

• In particular, a quick look at the factorization theorem will
show that s is a sufficient statistic for the exponential family

• Under repeated sampling, we easily obtain s̄ as a sufficient
statistic

• Thus, no matter how large the sample, we can always reduce
the information it contains down into a d-dimensional vector
of means
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Pitman-Darmois-Koopmans Theorem

• As it turns out, only exponential families have this property, in
which the sufficient statistic remains of fixed dimension under
repeated sampling

• This result was shown for one-dimensional exponential families
by Fisher, who originally introduced the concepts of
sufficiency and exponential tilting

• Later, a trio of authors working independently in different
countries extended this result to multiparameter families; the
result is known as the Pitman-Darmois-Koopmans theorem
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Likelihood

• Furthermore, exponential families are particularly convenient
in terms of their likelihood

• The log-likelihood of any exponential family is simply
n[s̄⊤θ − ψ(θ)] plus a constant, so its gradient is

∇ℓ(θ|x) = s̄ − ∇ψ(θ)

and

θ̂ = (∇ψ)−1(s̄)
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Example: Poisson

• Returning to the Poisson distribution, where s = x and
ψ(θ) = eθ, we have

ψ̇(θ) = eθ

and

θ̂ = log x̄

• The inverse is not always so mathematically tractable,
however: for example in the gamma distribution, ∇ψ(θ)
involves the digamma function, whose inverse is not available
in closed form
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Central limit theorem

• Furthermore, since the MLE is simply a function of the mean
in exponential families, it is particularly easy to derive its
limiting distribution

• Letting µ = E(s), the central limit theorem tells us that
√
n(s̄ − µ) d−→ N(0,V),

where V = ∇2ψ(θ)
• Thus, letting g denote the transformation θ = g(µ), we have

√
n(θ̂ − θ∗) d−→ N(0,∇g(µ)⊤V∇g(µ))

by the delta method; keep in mind here that ∇g and V are
both d× d matrices
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Application to the Poisson case

• In the Poisson case, ψ̈(θ) = eθ = µ and g(µ) = logµ, so
√
n(θ̂ − θ) d−→ N(0, e−θ)

• Thus, θ̂ ± 1.96
√
e−θ̂/n is an approximate 95% confidence

interval for θ, which we could transform to get a confidence
interval for µ
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Remarks

• The maximum likelihood estimator is asymptotically normal
not only in exponential families, but in a much wider class of
models

• Specifically, we require only that the likelihood is a “smooth”
function of θ, in a sense that we will discuss later

• We’ll go into more details regarding likelihood-based
inference, confidence intervals, tests, etc., soon
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Introduction

• Until now, we have assumed that the dimension of θ and s
was the same as the number of unknown parameters

• However, it can also be the case that the parameter space Θ
is constrained somehow; for example if θ is a function of β,
with dim(β) = k < d

• In such cases the exponential family is no longer said to be
“full” or “full rank”
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Curved vs flat exponential families

• How large an impact this makes on likelihood-based inference
depends on whether the function θ(β) is linear (“flat”) or not
(“curved”)

• If there is a matrix M such that θ = Mβ, then

exp{s⊤θ − ψ(θ)} = exp{s⊤Mβ − ψ(Mβ)}
= exp{s̃⊤β − ψ̃(β)}

in other words, we still have a regular exponential family,
albeit with reduced rank k < d, new summary statistics s̃, and
a new normalizing function ψ̃

• If θ(β) is a nonlinear function, however, things can be much
more complicated
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Example: Regression

• Flat exponential families come up quite often in regression
models, especially generalized linear models

• For example, we might observe Yi
⊥⊥∼ Pois(θi), but impose a

model g(θi) = x⊤
i β, which restricts Θ to a lower-dimensional

subspace of Rn
• If the systematic component of our model is θ = Xβ (i.e., we

assume a linear model with respect to the natural
parameters), then our exponential family is not curved

• In the GLM literature, this is known as the canonical link
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Example: Normal, known coefficient of variation

• As a simple example of a curved exponential family, suppose
x ∼ N(µ, c2µ2), where c, the coefficient of variation, is known

• The natural parameter and statistic are 2-dimensional, but
there is only one unknown parameter

• The parameter space forms a one-dimensional line curving
through R2:
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Definition

• A variation on exponential tilting, and one that is often very
useful in statistical modeling, is to introduce a dispersion
parameter and tilt by exp{s⊤θ/ϕ}

• The resulting model is then of the form

p(x|θ, ϕ) = exp
{s⊤θ − ψ(θ)

ϕ

}
p0(x, ϕ)

• Note that the normalizing constant is now exp{ψ(θ)/ϕ}
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Mean and variance

• The primary motivation for doing this is to allow the variance
to be parameterized separately from the mean

• Specifically,

E(s) = ∇ψ(θ) = µ

V(s) = ϕ∇2ψ(θ) = ϕV(µ);

you will derive these results in the next homework assignment
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Example: Poisson distribution

• In practice, the base distribution p0(x, ϕ) is often left
unspecified (or rather, implicitly specified)

• For example, by introducing a dispersion parameter into the
Poisson model, we now have the useful result that
V(X) = ϕµ; instead of requiring that the variance equals the
mean, we can instead allow the model to accommodate over-
or under-dispersion

• However, p0(x, ϕ) is the function that satisfies

∞∑
x=0

exp
{
xθ − eθ

ϕ

}
p0(x, ϕ) = 1;

not so trivial to find
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Estimation

• Note that this does not actually affect estimation of θ, since
we still have θ̂ = (∇ψ)−1(s̄)

• However, it does have two meaningful implications for
modeling:

◦ We cannot find the MLE of ϕ
◦ We cannot compute likelihood ratios

• In practice, one typically uses some other estimation strategy,
such as method of moments, to obtain ϕ̂
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Inference

• Its impact on likelihood-based inference, however, is not so
trivial to remedy

• In practice, what is often done is to simply replace ϕ with ϕ̂ in
the likelihood and treat the likelihood as though ϕ̂ were a
known constant rather than an unknown parameter

• This approach (the “plug-in” likelihood) often works
reasonably well; however, by treating an unknown quantity as
a known one, we bias our inference towards being
overconfident (confidence intervals too narrow)
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