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A graphical introduction

Maximum and curvature of likelihood o
rameter

Introduction

e In our previous lecture, we saw how likelihood-based inference
works for exponential families

e Starting today, we are going to adopt a more general outlook
on likelihood, and not make any specific assumptions about
its form

e As we remarked at the outset of the course, the likelihood
function is minimal sufficient

e This means that the entire function is the object that contains
the information necessary for objective inference
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Maximum and curvature of likelihood

Maximum likelihood estimation

e However, a number is of course much simpler and easier to
communicate and manipulate than an entire function, so it is
desirable to summarize and simplify the likelihood

e The single most important information about the likelihood is
surely the value at which it is maximized

o The maximum likelihood estimator, 6, of a parameter 0, given
observed data x, is

6 = arg max L(0|x).
0

e This was Fisher's original motivation for the likelihood (in his
later years, however, he came to realize that likelihood was
more than merely a device for producing point estimates)
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A graphical introduction
rameter

Maximum and curvature of likelihood

Curvature

e A single number is not enough to represent a function

o However, if the likelihood function is approximately quadratic,
then two numbers are enough to represent it: the location of
its maximum and its curvature at the maximum

e Specifically, what | mean by this is that any quadratic
function can be written

f(z) = c¢(x — m)* + Const,

where c is the curvature and m the location of its maximum;
the constant is irrelevant given our earlier remarks about how
likelihood comparisons are only meaningful in the relative
sense
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A graphical introduction
Infer
Inference: Mult

Maximum and curvature of likelihood

Quadratic approximation: lllustration

The likelihood itself does not tend to be quadratic, but the
log-likelihood does; from our first lecture:
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Maximum and curvature of likelihood

RENMES

e Log is a monotone function, so the value of 6 that maximizes
the log-likelihood also maximizes the likelihood

e Even good approximations break down for 8 far from 0:
regularity is a local phenomenon

e As we will be referring to it often, we will use the symbol £ to
denote the log-likelihood: ¢(6) = log L(8)

e The situation is similar in multiple dimensions; any quadratic
function can be written

f(x) = (x —m)"C(x — m) + Const;

we now require a d X 1 vector m to denote the location of the
maximum and a d X d matrix C to describe the curvature
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A graphical introduction

Maximum and curvature of likelihood o
rameter

Regularity

o Likelihood functions that can be adequately represented by a
quadratic approximation are called regular®

e Conditions that ensure the validity of the approximation are
called regularity conditions

e We will discuss regularity conditions in detail later; for now,
we will just assume that the likelihood is regular

When we say that the likelihood has a quadratic approximation, what we
really mean of course is that the log-likelihood has a quadratic approximation
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Maximum and curvature of likelihood

The score statistic

e The derivative of the log-likelihood is a critical quantity for
describing this quadratic approximation

e The quantity is so important that it is given its own name in
statistics, the score, and often denoted u:

u(f) = VI(0x)

e Note that
o u is a function of
o For any given 8, u(6) is a random variable, as it depends on
the data x; usually suppressed in notation
o For independent observations, the score of the entire sample is
the sum of the scores for the individual observations:

u(®) = > ui(0)
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Maximum and curvature of likelihood

Score equations

o If the likelihood is regular, we can find 0 by setting the
gradient equal to zero; the MLE is the solution to the
equation(s)

this system of equations is known as the score equation(s) or
sometimes the likelihood equation(s)
o For example, suppose we have X; ' N(, 0?) with o known
o Ui(0) = (Xi —0)/0”
0 U(0) =3 ,(Xi —0)/0”

A~

coUl)=0 = 0=z
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A graphical introduction

Maximum and curvature of likelihood

lllustration (vertical line at 6*)
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A graphical introduction

Maximum and curvature of likelihood o
rameter

Information

e Meanwhile, the curvature is given by the second derivative
e This quantity is called the information,

T.(8) = —V2((6);

the negative sign arises because the curvature at the
maximum is negative

e The name “information” is an apt description: the larger the
curvature, the sharper (less flat) the peak, so the less
uncertainty we have about 6
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Maximum and curvature of likelihood A gerdifie] sl

Information: lllustration

Random sample from the Poisson distribution:
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Maximum and curvature of likelihood

Information: Example

e As an analytic example, let's return to the situation with
X; % N(#,0?) and o known

o Z;(0) = 1/0?
o T,(0) =n/o?

e Note that
o For independent samples, the total information is the sum of

the information obtained from each observation

o Noisier data = less information

e In general, the information depends on both X and 6 (the

normal is a special case); we'll return to this point later
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A graphical introduction

Maximum and curvature of likelihood Inf |
n ingle parz

Information: Another example

e As another example, suppose there are 5 observations taken
from a N(6, 1) distribution, but we observe only the maximum
.72(5) =3.5

e Here, it is not clear how we would find the MLE, score, and
information analytically, but we can use numerical procedures
to optimize and calculate derivatives

e In this case, the information is 2.4, implying that knowing the
maximum of 5 observations is worth 2.4 observations — better

than a single observation, but not as good as having all 5
observations
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A graphical introduction
Inference: Single parameter
Inference: Multiple parameters

Maximum and curvature of likelihood

Normal likelihood

e From an inferential standpoint, we can view this quadratic
approximation as a normal approximation, as a quadratic
log-likelihood corresponds to the Gaussian distribution

e As we mentioned in our first class, connecting likelihood to
probability is challenging in general; however, it is easy in the
case of the normal distribution

e For an iid sample from a N(, 0?) distribution (assuming o
known; we'll consider the multiparameter case next), the
likelihood is

1

L(0) x exp ~552 Z(xz —0)?
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nical introduction
e: Single parameter
e: Multiple parameters

Maximum and curvature of likelihood

Likelihood ratios

e The likelihood ratio, then, is simply

L(®) _ _n 7—0)2
logm - 20_2( 6)

e Furthermore, letting 8* denote the true value of 8, we know

that (Z — 0*)/(o/\/n) ~ N(0,1), so

L(0)
Lo ~ M

2log

e |n other words, if we want a 95% confidence interval, we
should set ¢ = exp{—3x? (95} = 0.15
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Maximum and curvature of likelihood

Inference: Single parameter

Binomial illustration (n=10, # = 0.8)

Binomial (n=10, x=8)

£(8)

Actual coverage (simulation): 88.3%
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Maximum and curvature of likelihood

Inference: Single parameter

Binomial illustration (n=100, 6 = 0.8)

Binomial (n=100, x=80)

£(8)

0.70 0.75 0.80 0.85
0

Actual coverage (simulation): 93.2%
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Maximum and curvature of likelihood

Inference: Single parameter

Binomial illustration (n=1000, 6§ = 0.8)

Binomial (n=1000, x=800)

£(8)
i

T T T T T T 1
0.77 0.78 0.79 0.80 0.81 0.82 0.83

0

Actual coverage (simulation): 94.9%
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Maximum and curvature of likelihood

Multiparameter case

e Similarly, for the multivariate normal (assuming a nonsingular
variance),

log ﬁgz; — lx-0)S ' (x-0),

so the likelihood interval {6 : L(8)/L(8) > ¢} has probability
P(x% < —2logc) of containing 6*
e Note that the presence of multiple parameters changes the
probability calibration; for example, with d =5
o ¢ =0.15 now provides only a 0.42 probability of containing 6*
o We now need ¢ = 0.004 to attain 95% coverage
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. AT troduction
Maximum and curvature of likelihood
gle parameter

Itiple parameters

“Pure” likelihood for multiparameter problems?

e The interval {# : L(0)/L(A) > c} is based purely on
likelihood; as we remarked in our first lecture, the interval
itself is neither Bayesian nor frequentist — those paradigms
arise only in attempting to assign this interval a probability

e |s a “pure” likelihood approach possible in the multiparameter
case (i.e., without the frequentist x? calculations to guide us)?

e Suppose the (relative) likelihood of each parameter is
(approximately) independent so that, for example, if
L(61) = 0.2 and L(62) = 0.2, then L(6) = 0.22 = 0.04

e Using ¢ = 0.15 leads to something of a contradiction: #; and
0o are both “likely”, but somehow the pair (61,6s) is
“unlikely”
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Maximum and curvature of likelihood -

neter
rameters

“Pure” likelihood for the multiparameter case

e An obvious solution is to use c¢?: now if L(0) < 0.152, then
we must have L(6;) < 0.15 or L(62) < 0.15
e Furthermore, we can write {6 : L(6)/L(0) < ¢?} as

20(0) — 20(6) < 2dlogc,

or, using the specific value ¢ = e,

A

—20(8) + 2d < —20(8)

o We have arrived at AIC: 0 is an attractive model, despite
adding d parameters, if the above inequality holds
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Score
Properties of the score and information Information

Properties of the score: Introduction

o Earlier, we defined the score as the random function
u(0) = V{(0|x)

e With some mild conditions, the random variable u(8*) turns
out to have some rather elegant properties

e These properties are at the core of proving many important
results about likelihood theory
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Score
Properties of the score and information Information

Expectation

e We saw earlier that u(8*) tends to vary randomly about zero;
let us now formalize this observation

e Theorem: Suppose the likelihood allows its gradient to be
passed under the integral sign. Then Eu(6*) = 0.

e A derivative is a type of limit, so whether or not it can be
passed under the integral sign is governed by the dominated
convergence theorem (we'll go into more details next lecture)

e Note that this is an identity, not an asymptotic relationship
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Score
Properties of the score and information Information

Variance of the score

e Under similar conditions involving the second derivative, we
also have a nice result involving the variance: namely, that the
variance of the score is the expected information

e The variance of the score is called the Fisher information,
which we will denote #: £(0) = Vu(0|X); its connection
with our previous definition of information is made clear in the
following theorem

e Theorem: Suppose the likelihood allows its Hessian to be
passed under the integral sign. Then £(0*) = EZ(6"|X).

e This requires the same sort of smoothness conditions as
before, except now applied to the second derivatives
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Score
Properties of the score and information Information

RENMES

e Recall that the information Z(0) = —V?2/(6) depends on the
data X

e By taking an expected value, we are essentially averaging over
different data sets that could occur, weighted by their
probability

e To distinguish between the two, the information using the
observed data is called the observed information

e Note: Keep in mind that that Z is random, while £ is fixed
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Score
Properties of the score and information Information

Notation

Notation to distinguish between all these information variants is
not universal, but here is what I'll use in this class:
e T, is the observed information for observation 7
e ¥ is Fisher information for observation i (for iid data, this
will be the same for every observation, hence no i subscript)
e T, is the observed information for the full sample
e ¥, is the Fisher information for the full sample; if the data
are iid then
EZ, =nSf = %,

e I is the identity matrix
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Score
Properties of the score and information Information

Distribution

e Furthermore, since u(0|x) = >, u(0|x;), we can apply the
central limit theorem to see that

Va{u(6”) — Eu(6%)} — N(0,.7(67)),
or
u(6*)
LD
e Showing that the maximum likelihood estimators, on the
other hand, are asymptotically normal (thereby justifying our

earlier normal-based inferential procedures) involves a bit
more work (we'll take up this question in a later lecture)

~4, N(0, #(6%))
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Score
Properties of the score and information Information

Observed vs expected information

e Earlier, we discussed the idea that the width of confidence
intervals depends on the information

e We've now introduced two kinds of information; which should
we use for inferential purposes?

e Broadly speaking, either one is fine: by the WLLN,

%1(0) r, F£(0), so we have both
F,(07)72u(07) —%5 N(0,T)
and
T,.(0%)1/2u(6*) L N(0,1)

assuming £ and Z are positive definite
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Score
Properties of the score and information Information

Observed vs expected information (cont'd)

e In practice as well, the difference between the two is typically
not very important or noticeable

e However, they aren’t the same . ..surely one tends to be
better than the other?

e I'll present some advantages of both observed and expected
information, but remember that they are far more alike than
they are different
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Score
Properties of the score and information Information

Advantages of Fisher information

The Fisher information has two major advantages
e Smoothness and stability
o Especially when n is small, the observed information can be
noisy, whereas its expectation is more unstable
o Fisher information is particularly attractive for software to
avoid numerical issues
e Mathematical tractability
o In many models, the Fisher information is easy to derive and
results in a great deal of cancellation, leading to much simpler
formulas
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Score
Properties of the score and information Information

Advantages of observed information

To illustrate the advantages of observed information, let’s consider
T; id Exp(6) subject to right censoring, where the observed
information is d/t?2 while the expected information is Ed/92, with
d the number of uncensored events
e Always available: Fisher information can be impractical /
impossible to calculate
e Relevance: Suppose we observed more events than
expected. .. is it really relevant that we could have obtained a
sample with less information?
e Accuracy: In general, theoretical analysis and simulation
studies indicate that observed information results in more
accurate inference (Efron and Hinkley, 1978)
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