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Expanding the score function

e Today, we continue with our goal of deriving the asymptotic
properties of maximum likelihood estimators

e Previously, we established conditions under which the MLE
was consistent: [0 — 6*|| 50

e Today, we will see that under those same conditions,
/(6 — 6*) converges in distribution to a multivariate normal

o After establishing this, we will consider how these results
change if we remove the log-concavity assumption and allow
for the possibility of multiple maxima
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Expanding the score function

Vector-valued functions

e The main idea behind the proof is to take a Taylor series
expansion not of the likelihood, but rather the score

e However, this requires us to extend our earlier Taylor series
results a bit

e Up until this point, we have always expanded scalar-valued
functions, but the score function is vector-valued, which
impacts the Lagrange form of the expansion
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Expanding the score function

Taylor series of vector-valued functions

e In particular, there is no longer a single point @ for which the
Lagrange result holds, so we have to restate the assumptions
somewhat and require some additional conditions

e Theorem: Suppose f : R* — R” is twice differentiable on
N,(x¢), and that V2f is bounded on N,(xq). Then for any
x € Ny(xo),

f(x) = f(x0) + {VE(x0) + O(llx —x0[)}" (x — x0)
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https://myweb.uiowa.edu/pbreheny/7110/wiki/taylor-vector.html

Expanding the score function

Application to the score

e Applying this expansion to the score vector, we obtain the
following corollary, which will come up many times in this
course

e Corollary: Suppose regularity conditions (A)-(C) from the
previous lecture are met. Then for any consistent estimator 0,
we have

Lu(B) = Lu(6") — {F(0") +0,(1)} V(6 — 6°):
if 0 is n-consistent, then

J=u(0) = J-u(0") — F(0")vn(0 — ) + 0,(1)
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Expanding the score function

A corollary to the corollary

Similarly, for any two consistent estimators 6 and 6, we have
Lu(d) = Lu(dy) — {FO7) + 0, (1)} V(B -

if both estimators are \/n-consistent,

A A

Fru(81) = Su(82) — F(0°)Vn(8:1 — 62) + 0p(1)
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Expanding the score function

Slutsky's extension

e Lastly, there is one more preliminary result that we need in
order to prove asymptotic normality (I call this “Slutsky's
extension”, but I'm not aware of any established name for this
result)

e Theorem: Suppose y, 4, y, where y is a d x 1 random
vector, A, N A, where A is a positive definite matrix, and
that y,, = A,x,. Then

Xn, i) A_ly

e Note that this would be trivial if A,, were invertible for all n,
but we don't know that — only that converges to a positive
definite matrix
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Main result

Asymptotic normalit: 7 2 .
ymp Y Influence functions

Asymptotic normality of the MLE

e Our main result for today is proving the following central limit
theorem-like result for the MLE of any smooth log-concave
model (which is pretty simple given all the earlier results)

¢ Theorem (Asymptotic normality of the MLE): Suppose
assumptions (A)-(D) from the previous lecture are met. Then
the maximum likelihood estimator 8 satisfies

A

V(6 —6%) -5 N(0, £(6%) ).

¢ Note that (A)-(D) therefore ensure not just consistency, but
\/n-consistency

e Note also another interpretation of the information: as
information increases, the variance of the MLE @ decreases
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Main result

Asymptotic normality Torecororm foe s
y ’ Influence functions

Non-standard problems

e Unlike the consistency proof, we do need differentiability
requirements for asymptotic normality to hold

e For example, we remarked previously that for X; g Unif(0, 9),
the MLE is consistent despite the likelihood not being
continuous or differentiable at 6*

e However, today's theorem does not hold for the uniform

distribution:
o Converges much faster: § — 6* is O,(1/n), not O,(1/y/n)
o #(0) is not even defined in the uniform case
o Asymptotic distribution is not normal:

n(0* — 0) - Exp(1/6%)
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Main result

Asymptotic normalit: .
ymp Y Influence functions

Influence function

e Since the MLE is y/n-consistent, we have
V(B 6%) = 151 (07)u(8") + 0,(1)
or in other words,
6=0"+1% F7HO)W(0) + 0,(1/v/n)

e |n statistics, this relationship is known as the influence
function (formal definition on next slide); essentially, the
derivative of the estimator with respect to the data
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Main result

Asymptotic normalit: .
ymp Y Influence functions

A connection with nonparametric statistics

e Influence functions play an important role in semiparametric
and nonparametric statistics
e Suppose we are interested in estimating some function T of a
distribution F’; the influence function is defined as
. [T{(1—e)F +e€by} —T(F
IF(z) = lim {( ) o} &) ;

e—0 €

where 9, is a distribution with all of its mass at x

e Then given some assumptions regarding the smoothness of T,
the von Mises expansion essentially extends all of this Taylor
series reasoning to the empirical CDF 2

T(E) = T(F) + - ST p(X0) + 0,(1/V)
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Main result

Asymptotic normalit: .
ymp Y Influence functions

Asymptotically linear estimators

e Such estimators are said to be asymptotically linear
o All asymptotically linear estimators are therefore
asymptotically normal by the CLT
o And the influence function determines the asymptotic variance
o Influence functions therefore provide a unifying thread
connecting parametric likelihood theory with semiparametric
and nonparametric statistics
e The influence function is potentially much more complicated
in such problems, but for the parametric MLE, it has a simple
form:

IF(z) = F1(0")u(6*|z)
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Multiple roots

Multiple roots

e Finally, let's consider what happens if we drop assumption
(D), that our likelihood is log-concave

o In this case, there are potentially many solutions to the
likelihood equations

even if the MLE is unique

e Furthermore, as our counterexample at the beginning of the
last lecture shows, if the likelihood has multiple modes there
is no guarantee that the MLE is even consistent
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Multiple roots

Local log-concavity

e However, as you probably noticed, when proving consistency
we only used assumption (D) at the very last step

e If we remove assumption (D), every step of the proof remains,
except for the fact that at the end, all we can say is that there
is a local maximum (i.e., a solution to the likelihood
equations, not the solution to the likelihood equations) inside
©* that is consistent and asymptotically normal

e In other words, the likelihood isn't log-concave everywhere,
but if the other conditions are met, and in particular if #(6%)
is positive definite, then there is a neighborhood ®* inside of
which the likelihood is log-concave, and our theorems hold in
a local sense
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Multiple roots

Revisiting our inconsistent MLE

The MLE isn't consistent but there is local solution which is:
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Multiple roots

Restating our earlier theorems

e With this in mind, we can offer more general restatements of
our earlier theorems

e Theorem (Consistency of the MLE): Suppose assumptions
(A)-(C) are met. Then with probability tending to 1, there
exists a consistent sequence of solutions 6., to the likelihood
equations:

0, - 6",
¢ Theorem (Asymptotic normality of the MLE): Suppose
assumptions (A)-(C) from the previous lecture are met. Then

with probability tending to 1, there exists a consistent
sequence of solutions 8,, to the likelihood equations satisfying

Vn(0, — 6%) % N(0, £(6°)7Y).
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Multiple roots

Useful?

e Now, is this a useful generalization?
e Not necessarily — in theory, you can just choose the correct
root, but that's an extremely strong assumption
o Whatever algorithm we're using to maximize the likelihood is
probably only going to return a single solution — we have no
guarantees about its properties
o Even if we were able to find all solutions of the likelihood
equations, we have no way of knowing which one to choose
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Multiple roots

Useful? (cont'd)

e But also ... maybe?

e Suppose we have an estimator 8, not the MLE, that we knew
to be consistent

e We could, for example, pick the solution to the likelihood
equations closest to 0

e More ambitiously, we could take a Taylor series expansion of
the likelihood equations about the point 6, then estimate 6
via:

60=0+1I,0) 'u)

e You can iterate this process if desired, repeating the above
calculation until convergence (this is Newton's method), or
just stop after one application (the “one-step estimator”)

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 18 / 21



Multiple roots

One-step estimator theorem

o We'll skip the proof of this, but if @ is not only consistent but
v/n-consistent, then our results hold not just for some
mysterious, unknown root of the likelihood equations, but for
the unique root defined on the previous slide

e Theorem: Suppose conditions (A)-(C) from the previous
lecture are met, and that @ is a \/n-consistent estimator of 6.
Define 8,, = 6, + Z,"(0,,)u(8,,). Then

Vn(0, — 6%) -5 N(0, £(6%) 7).

e One can also use #(6) to construct # and the theorem still
holds
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Multiple roots

Cauchy example

e For example, suppose X; id Cauchy(6); as we have already
seen, this likelihood has multiple local maxima and it is
unclear whether any given solution to the likelihood equations
is consistent and asymptotically normal

o However, it can be shown that the sample median, 6, is not
the MLE but is a \/n-consistent estimator of

e Thus, the procedure on the previous slide can be used to
obtain the likelihood root with known consistency and
asymptotic normality properties
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Multiple roots

A word of caution

e The Cauchy distribution is a nice success story of maximum
likelihood in the presence of multiple roots, but is arguably
more of the exception than the rule

e In practice, it's inherently risky to go around constructing
inference based on maximum likelihood in the presence of a
likelihood with multiple maxima

e In other words, don't misinterpret the theory to mean that any
root of the likelihood equations will be asymptotically normal
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