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Introduction

• In our previous lecture, we introduced the idea of conditioning
in order to obtain a distribution free of nuisance parameters

• Today, our goal will also be to create a distribution free of
nuisance parameters, although this time, we will be
accomplishing that goal by (in one way or another)
constructing a marginal distribution without nuisance
parameters
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Definition

• The classical approach to marginal regression is rather similar
to conditional likelihood

• As in the previous lecture, suppose we can derive statistics v
and w such that the likelihood can be factored into a marginal
distribution of w and a conditional distribution of v | w

• However, now it will be the marginal distribution that is free
of nuisance parameters:

p(x | θ, η) = p(w | θ)p(v | w, θ, η);

the first term, Lm(θ) = p(w | θ), is known as the marginal
likelihood

• Note that this term is free of nuisance parameters and that,
like the conditional likelihood, is a true likelihood,
corresponding to an actual distribution of observed data
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Example: Normal distribution

• As an example, suppose Xi
iid∼ N(µ, σ2)

• We have already seen that the (profile) MLE, 1
n

∑
i(xi − x̄)2,

is biased
• Consider instead the transformation

s2 = 1
n − 1

∑
i

(xi − x̄)2

• From ordinary normal distribution theory, we know that

(n − 1)s2 ∼ σ2χ2
n−1

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 4 / 31



Classical marginal likelihood
Linear mixed models

Nonlinear models

Definition
Estimation of variance

Example: Normal distribution (cont’d)

• This marginal likelihood is

ℓ(σ2) = −n − 1
2 log σ2 − (n − 1)s2

2σ2 ;

thus σ̂2 = s2, an unbiased estimate
• Note that x̄ ∼ N(µ, σ2/n) and x̄ ⊥⊥ s2, so in terms of

likelihood, we have

L(µ, σ2) = L(µ, σ2 | x̄)L(σ2 | s2)

• As with conditional likelihood, there is the possibility that we
are losing information by ignoring the first part of the
likelihood. . . with a single sample, however, it is hard to see
how x̄ could tell us much about σ2
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REML

• Another example: when fitting an ordinary linear regression
model, the MLE for σ2, RSS/n, is biased

• Alternatively, we could apply the transformation

v = [I − X(X⊤X)−1X⊤]y

• The marginal distribution is

v ∼ N(0, σ2[I − X(X⊤X)−1X⊤])

◦ Free of β
◦ Yields the MLE σ̂2 = RSS/(n − p)

• This is known the “restricted maximum likelihood” (REML)
estimate, although the name is slightly misleading
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Marginalization as a general technique

• Unlike conditional likelihood, however, marginal likelihood can
be applied widely, even in settings without a factorization
based on sufficient statistics

• In probability, we routinely eliminate random variables from
joint distributions through integration:

p(x) =
∫

p(x, y) dy

• In likelihood theory, we can eliminate nuisance parameters in
the same way; this is known as marginal likelihood or
integrated likelihood
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Marginalization and Bayesian statistics

• As we remarked in an earlier lecture, if the nuisance
parameters have a distribution (as they do in Bayesian
statistics), they can always be integrated out

• This is a major advantage of the Bayesian approach to
inference

• Our primary focus today will be on extending these ideas to
frequentist inference, but integrated likelihoods are important
in Bayesian inference as well – integrating out nuisance
parameters reduces the dimension of MCMC and often greatly
improves efficiency
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• Marginal likelihoods are also useful outside the Bayesian
framework if we are willing to treat nuisance parameters as
unobserved random variables, not fixed constants

• To do so, the nuisance parameters must be supplied with a
distribution (note that this adds a layer of assumptions to our
model)

• Such a model, in which certain parameters are treated as
unobserved random variables and others as unknown
constants, is known as a “mixed” model
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Motivating example

• Mixed models will be covered more comprehensively in other
courses, but we’ll take a brief look at them here in order to
see how marginal likelihood can be applied in general
modeling settings

• Let’s consider the model

yij
⊥⊥∼ N(αi + xijβ, σ2),

and assume we are interested in estimating both β and σ
• Such a model might arise if there were repeated

measurements on a subject, within a family, etc.
• As in the Neyman-Scott problem, the number of parameters is

increasing with the sample size, which poses a challenge to
maximum likelihood
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• How can we proceed with a marginal likelihood approach?
• In the case of linear models, we can use known properties of

the multivariate normal distribution to work everything out in
closed form

• Specifically, if we are willing to assume that αi
iid∼ N(µ, τ2),

with {αi} and the residual errors mutually independent, then
we can write our model as

yij = µ + xijβ + εij ,

where εij has mean zero and variance σ2 + τ2, as it
incorporates both the between-group variability (from αi) and
the within-group variability
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• The εij terms, however, are not independent, as the αi term
is shared across multiple observations

• This gives rise to the following correlation structure (assuming
consecutive observations are paired):

Vε =


σ2 + τ2 τ2 0 0 . . .

τ2 σ2 + τ2 0 0 . . .
0 0 σ2 + τ2 τ2 . . .
0 0 τ2 σ2 + τ2 . . .
...

...
...

... . . .


• Marginally, we have y ∼ N(µ + xβ, V), where V = Vε
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Estimation

• As we’ve seen in our homework assignment, however, we can
estimate β in closed form regardless of what structure the
variance has:

β̂ = (X⊤WX)−1X⊤Wy,

where W = V−1

• This, of course, assumes that V is known
• In our case, the structure of V is known (or at least

assumed), but the values of σ2 and τ2 are not
• Thus, in order to fit this model, we will need to proceed in an

iterative fashion, updating β given τ2 and σ2, then updating
τ2 and σ2 given β, and so on
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Competitors

• So, how well does this approach work?
• Let’s introduce some competing ideas for how to analyze this

data
• Naïve: Simply regress y on x, don’t even worry about αi

• Profile: Ordinary least squares with all n + 2 parameters
({αi}n

i=1, β, and σ)
• Oracle: Gets to use the true {αi}n

i=1 values
• Conditional: See previous lecture (note that this approach

eliminates nuisance parameters, but does not make additional
distributional assumptions about {αi}n

i=1; this works nicely in
the paired setting but doesn’t generalize easily)
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Results

I simulated n = 100 pairs of observations, with σ2 = τ2 = β = 1:
method BetaAvg BetaRMSE Variance

Profile 1.02 0.35 0.49
Mixed 1.01 0.30 1.00
Oracle 1.01 0.24 0.99
Naive 1.00 0.36 1.99
Conditional 1.02 0.35 0.99
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Remarks

• In terms of estimating β, all methods produce reasonable
estimates

• However, the marginal likelihood mixed model results in the
most accurate estimate (except for the oracle)

• With respect to estimating σ2:
◦ The profile likelihood approach substantially underestimates

(we’ve seen this already)
◦ The naïve approach substantially overestimates (this makes

sense)
◦ All other methods produce reasonable estimates
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Changing the data generating process

• This looks very good for marginal likelihood – and indeed, it is
a very effective and widely used approach in situations like this

• However, it is important to keep in mind that it comes at the
expense of added assumptions that may or may not be true

• For example, we have assumed that the distribution of αi is
independent of xij

• However, what if xij
⊥⊥∼ N(αi, 1)?
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Results, part 2

In this case, the mixed model’s assumptions are wrong and the
resulting coefficient estimate is biased:

method BetaAvg BetaRMSE Variance

Profile 1.00 0.10 0.50
Mixed 1.44 0.45 1.20
Oracle 1.00 0.05 0.99
Naive 1.50 0.51 1.50
Conditional 1.00 0.10 0.99
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Introduction to nonlinear mixed models

• This same idea can be extended to nonlinear models as well
• The big difference, however, is that without the nice

properties of the multivariate normal distribution, we cannot
simply derive the marginal distribution in closed form

• Instead, we will have to rely on a numeric algorithm to
approximate the integral
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Non-quadrature approaches

• There are many ways to do this, which you may be familiar
with from Bayesian statistics

• Monte Carlo approaches are indeed one way to integrate out
the random effects

• Another approach is the trapezoid rule, approximating the
integral by breaking it up into a large number of little
trapezoids
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Gaussian quadrature

• However, a more widely used method for mixed models is
something called Gaussian quadrature

• The basic idea of Gaussian quadrature is to approximate an
integral with a weighted sum:

∫ b

a
f(x)p(x) dx ≈

K∑
k=1

wkf(zk)

• The cleverness of Gaussian quadrature is to choose the
weights {wk} and focal points (or “abscissas”) {zk} so that
this approximation is as accurate as possible
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Brief theory of quadrature

• The theory of Gaussian quadrature, while rather elegant, is
beyond the scope of this course

• Nevertheless, I’ll share the result of one theorem (without
proof) so that you can get a sense of how well it works

• Theorem: For any absolutely continuous distribution, there
exist positive weights {wk}K

k=1 and points {zk}K
k=1 such that

the quadrature formula is exact whenever f is a polynomial of
degree 2K − 1 or lower.
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Computation of points and weights

• Solving for these points and weights, of course, is not trivial,
but for common probability distributions p(x), the problem
has already been solved by long-dead brilliant mathematicians

• Gauss-Legendre quadrature gives the points and weights for
the uniform distribution, Gauss-Laguerre for the gamma
distributions, Gauss-Jacobi the beta distribution, and so on

• The most widely used in statistics are the Gauss-Hermite
polynomials, which correspond to the normal distribution

• Several R packages provide these points and weights; I’ll use
GHrule from the lme4 package
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Example: Variance of the median
• If Xi

iid∼ N(0, 1), with n odd, the sample median has density

p(x) = n!
m!m!Φ(x)m{1 − Φ(x)}mϕ(x),

where m = (n − 1)/2
• By symmetry, the expected value of the median is zero, but

the variance is not easy to calculate
• This is therefore a natural candidate for a numerical method

such as quadrature:

VX(m+1) =
∫

x2p(x) dx =
∫

f(x)ϕ(x) dx

≈
K∑

k=1
wkf(zk)
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Results

• We could also approximate this result with Monte Carlo
integration (simulate a sample of normal variables, take the
median, repeat thousands of times, and calculate the
variance) or with asymptotic theory, which says that the
variance should be about π/(2n)

• Results for n = 11:
Variance

Monte Carlo (N = 100, 000) 0.1367
Asymptotic 0.1428
Gauss-Hermite (K = 20) 0.1476
Gauss-Hermite (K = 100) 0.1372

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 25 / 31



Classical marginal likelihood
Linear mixed models

Nonlinear models

Gaussian Quadrature
A generalized linear mixed model

A mixed effects logistic regression
• To see how this works in statistical modeling, let’s consider

the binary analog of our earlier model:

log πij

1 − πij
= µ + xijβ + αi,

where again we will assume that αi
iid∼ N(0, τ2)

• Letting αi = τai, ai
iid∼ N(0, 1), the marginal likelihood is

L(β, µ, τ2) =
n∏

i=1

∫ {
mi∏
j=1

p(yij | xij , αi, β, µ)
}

p(αi | τ2) dαi

=
n∏

i=1

∫
exp

{
mi∑
j=1

log p(yij | xij , τai, β, µ)
}

ϕ(ai) dai
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Approximate marginal likelihood

• Having now written the integral in the form
∫

f(x)ϕ(x) dx,
we can apply Gauss-Hermite quadrature:

L(β, µ, τ2) ≈
n∏

i=1

K∑
k=1

wk exp
{

mi∑
j=1

log p(yij | xij , τzk, β, µ)
}

• We now have the likelihood in a form that, while not
necessarily simple, is at least manageable in terms of taking
gradients to find the score and information
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Gaussian quadrature in software

• Quadrature is the most accurate method for integrated
likelihood when the random-effects dimension is small
(typically 1–3)

• Unfortunately, the number of points required increases
exponentially with dimension (Kd), so it doesn’t scale well to
high-dimensional random effects (Laplace approximations are
used here instead)

• For example, lme4::glmer() uses adaptive Gaussian
quadrature (AGQ) for random-intercept models, but falls back
to Laplace when multiple random effects appear
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Simulation case study

• As we did with the linear models, let’s compare this marginal
likelihood approach with some other plausible ways of
analyzing this data

• Naïve: As before, ignore the αi effects completely and just fit
a standard logistic regression

• Profile: As before, fit a standard logistic regression with
n + 1 parameters

• Conditional: The method we derived in the previous lecture,
where we form a conditional likelihood from pairs such that
yi1 + yi2 = 1
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Results

Simulation case study results (n = 100):
method Mean RMSE

Naive 0.63 0.40
Profile 2.24 1.60
Conditional 1.12 0.52
Marginal 0.96 0.31

Data were simulated with β = 1; τ2 = 4; 1,000 independent
replications
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Remarks

• As we would expect from our earlier analytical look at this
problem, the profile MLE is biased upwards, while the naïve
MLE is biased downward

• The conditional and marginal likelihood approaches both look
reasonable, although as before, the marginal likelihood mixed
model has a somewhat smaller SE (primarily due to making
stronger assumptions, of course)
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