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Classical marginal likelihood Definition

Estimation of var

Introduction

e In our previous lecture, we introduced the idea of conditioning
in order to obtain a distribution free of nuisance parameters

e Today, our goal will also be to create a distribution free of
nuisance parameters, although this time, we will be
accomplishing that goal by (in one way or another)
constructing a marginal distribution without nuisance
parameters
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Classical marginal likelihood Definition

Estimation of variance

Definition

e The classical approach to marginal regression is rather similar
to conditional likelihood

e As in the previous lecture, suppose we can derive statistics v
and w such that the likelihood can be factored into a marginal
distribution of w and a conditional distribution of v |w

e However, now it will be the marginal distribution that is free
of nuisance parameters:

p(:l? | 0, 77) = p(w ‘ 0)])('1) | w, 0, 77);

the first term, L,,,(0) = p(w | @), is known as the marginal
likelihood

e Note that this term is free of nuisance parameters and that,
like the conditional likelihood, is a true likelihood,
corresponding to an actual distribution of observed data
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Classical marginal likelihood .
Definition

Estimation of variance

Example: Normal distribution

As an example, suppose X; i N(u,o?)

We have already seen that the (profile) MLE, 1 37, (z; — z)?,
is biased

Consider instead the transformation

:n_lz(wi—(f)z

From ordinary normal distribution theory, we know that

(n— 1)52 ~ 0'2X?7,—1
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Classical marginal likelihood P
! margl HKEH Definition

Estimation of variance

Example: Normal distribution (cont'd)

e This marginal likelihood is

-1 —1)s?
(o) = I 5 log o — (n=1)s” 202)8 ;

thus 62 = s2, an unbiased estimate

e Note that Z ~ N(u,02/n) and 7 1L s2, so in terms of
likelihood, we have

L(p.0%) = L(,0?| 2)L(0®| 5*)

o As with conditional likelihood, there is the possibility that we
are losing information by ignoring the first part of the
likelihood. .. with a single sample, however, it is hard to see
how Z could tell us much about ¢
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Classical marginal likelihood

Definition
Estimation of variance

e Another example: when fitting an ordinary linear regression
model, the MLE for o2, RSS/n, is biased
o Alternatively, we could apply the transformation

v=[I-XX"X)"'X"y

e The marginal distribution is
v ~ N(0,0%[I - X(X"X)"1X])

o Free of B
o Yields the MLE 6% = RSS/(n — p)

e This is known the "restricted maximum likelihood” (REML)
estimate, although the name is slightly misleading
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Linear mixed models

Marginalization as a general technique

e Unlike conditional likelihood, however, marginal likelihood can
be applied widely, even in settings without a factorization
based on sufficient statistics

e In probability, we routinely eliminate random variables from
joint distributions through integration:

p(x) = / p(z,y)dy

e In likelihood theory, we can eliminate nuisance parameters in
the same way; this is known as marginal likelihood or
integrated likelihood
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Linear mixed models

Marginalization and Bayesian statistics

e As we remarked in an earlier lecture, if the nuisance
parameters have a distribution (as they do in Bayesian
statistics), they can always be integrated out

e This is a major advantage of the Bayesian approach to
inference

e Our primary focus today will be on extending these ideas to
frequentist inference, but integrated likelihoods are important
in Bayesian inference as well — integrating out nuisance
parameters reduces the dimension of MCMC and often greatly
improves efficiency
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Linear mixed models

Mixed models

o Marginal likelihoods are also useful outside the Bayesian
framework if we are willing to treat nuisance parameters as
unobserved random variables, not fixed constants

e To do so, the nuisance parameters must be supplied with a
distribution (note that this adds a layer of assumptions to our
model)

e Such a model, in which certain parameters are treated as
unobserved random variables and others as unknown
constants, is known as a “mixed” model
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Linear mixed models

Motivating example

o Mixed models will be covered more comprehensively in other
courses, but we'll take a brief look at them here in order to
see how marginal likelihood can be applied in general
modeling settings

e Let's consider the model

yij ~ N(ai + 243,07,

and assume we are interested in estimating both 5 and o

e Such a model might arise if there were repeated
measurements on a subject, within a family, etc.

e As in the Neyman-Scott problem, the number of parameters is
increasing with the sample size, which poses a challenge to
maximum likelihood
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Linear mixed models

Marginal likelihood

e How can we proceed with a marginal likelihood approach?

e In the case of linear models, we can use known properties of
the multivariate normal distribution to work everything out in
closed form )

e Specifically, if we are willing to assume that «; id N(p, 72),
with {c;} and the residual errors mutually independent, then
we can write our model as

Yij = 1+ zii 0 + €ij,

where ¢;; has mean zero and variance o2+ 72 asit
incorporates both the between-group variability (from «;) and
the within-group variability
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Linear mixed models

Correlation structure

e The g;; terms, however, are not independent, as the a; term
is shared across multiple observations

e This gives rise to the following correlation structure (assuming
consecutive observations are paired):

% + 72 72 0 0

72 0%+ 12 0 0

Ve — 0 0 % + 72 72
0 0 72 o + 12

e Marginally, we have y ~ N(u + x5, V), where V = Ve
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Linear mixed models

Estimation

As we've seen in our homework assignment, however, we can
estimate 3 in closed form regardless of what structure the
variance has:

B=(XTWX)'X Wy,

where W = V1

e This, of course, assumes that V is known
e In our case, the structure of V is known (or at least

assumed), but the values of o2 and 72 are not

e Thus, in order to fit this model, we will need to proceed in an

Likelihood theory

iterative fashion, updating B given 72 and o2, then updating
72 and o2 given 3, and so on
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Linear mixed models

Competitors

e So, how well does this approach work?

o Let's introduce some competing ideas for how to analyze this
data

e Naive: Simply regress y on x, don't even worry about «;

¢ Profile: Ordinary least squares with all n + 2 parameters
({ai}y. B, and o)

e Oracle: Gets to use the true {«a;}}; values

e Conditional: See previous lecture (note that this approach
eliminates nuisance parameters, but does not make additional
distributional assumptions about {a;}!" ;; this works nicely in
the paired setting but doesn't generalize easily)
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Linear mixed models

Results

| simulated n = 100 pairs of observations, with 02 = 72 = 3 = 1:

method BetaAvg BetaRMSE Variance
Profile 1.02 0.35 0.49
Mixed 1.01 0.30 1.00
Oracle 1.01 0.24 0.99
Naive 1.00 0.36 1.99
Conditional 1.02 0.35 0.99
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Linear mixed models

RENMES

e In terms of estimating 3, all methods produce reasonable
estimates
e However, the marginal likelihood mixed model results in the
most accurate estimate (except for the oracle)
e With respect to estimating o?:
o The profile likelihood approach substantially underestimates

(we've seen this already)
o The naive approach substantially overestimates (this makes

sense)
o All other methods produce reasonable estimates
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Linear mixed models

Changing the data generating process

e This looks very good for marginal likelihood — and indeed, it is
a very effective and widely used approach in situations like this

e However, it is important to keep in mind that it comes at the
expense of added assumptions that may or may not be true

e For example, we have assumed that the distribution of «; is
independent of x;;

o However, what if z;; ~ N(a;,1)?
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Linear mixed models

Results, part 2

In this case, the mixed model’s assumptions are wrong and the
resulting coefficient estimate is biased:

method BetaAvg BetaRMSE Variance
Profile 1.00 0.10 0.50
Mixed 1.44 0.45 1.20
Oracle 1.00 0.05 0.99
Naive 1.50 0.51 1.50
Conditional 1.00 0.10 0.99

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny



Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models .

Introduction to nonlinear mixed models

e This same idea can be extended to nonlinear models as well

e The big difference, however, is that without the nice
properties of the multivariate normal distribution, we cannot
simply derive the marginal distribution in closed form

o Instead, we will have to rely on a numeric algorithm to
approximate the integral
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Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models .

Non-quadrature approaches

e There are many ways to do this, which you may be familiar
with from Bayesian statistics

e Monte Carlo approaches are indeed one way to integrate out
the random effects

e Another approach is the trapezoid rule, approximating the

integral by breaking it up into a large number of little
trapezoids
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Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models .

Gaussian quadrature

e However, a more widely used method for mixed models is
something called Gaussian quadrature

e The basic idea of Gaussian quadrature is to approximate an
integral with a weighted sum:

b K
| t@pla)de = Y wif ()
a k=1

o The cleverness of Gaussian quadrature is to choose the
weights {wy} and focal points (or “abscissas”) {z;} so that
this approximation is as accurate as possible
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Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models .

Brief theory of quadrature

e The theory of Gaussian quadrature, while rather elegant, is
beyond the scope of this course

o Nevertheless, I'll share the result of one theorem (without
proof) so that you can get a sense of how well it works

e Theorem: For any absolutely continuous distribution, there
exist positive weights {wy }1< | and points {2z} | such that
the quadrature formula is exact whenever f is a polynomial of
degree 2K — 1 or lower.
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Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models .

Computation of points and weights

e Solving for these points and weights, of course, is not trivial,
but for common probability distributions p(x), the problem
has already been solved by long-dead brilliant mathematicians

o Gauss-Legendre quadrature gives the points and weights for
the uniform distribution, Gauss-Laguerre for the gamma
distributions, Gauss-Jacobi the beta distribution, and so on

e The most widely used in statistics are the Gauss-Hermite
polynomials, which correspond to the normal distribution

e Several R packages provide these points and weights; I'll use
GHrule from the 1me4 package

Likelihood theory BIOS 7110: Fall 2025 Patrick Breheny 23 /31



Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models .

Example: Variance of the median

o If X; S N(0,1), with n odd, the sample median has density

n!

p(r) = O(z)" {1 — @(x)}"o(x),

m!m/!

where m = (n —1)/2

e By symmetry, the expected value of the median is zero, but
the variance is not easy to calculate

e This is therefore a natural candidate for a numerical method
such as quadrature:

VX = [ a%pla)dz = [ f@)(a) do

K
~ > wif(zk)
k=1
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Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models .

Results

e We could also approximate this result with Monte Carlo
integration (simulate a sample of normal variables, take the
median, repeat thousands of times, and calculate the
variance) or with asymptotic theory, which says that the
variance should be about 7/(2n)

e Results for n = 11:

Variance
Monte Carlo (N = 100,000)  0.1367
Asymptotic 0.1428
Gauss-Hermite (K = 20) 0.1476
Gauss-Hermite (K = 100) 0.1372
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1 Quadrature

. A generallzed linear mixed model
Nonlinear models

A mixed effects logistic regression

e To see how this works in statistical modeling, let's consider
the binary analog of our earlier model:

log =+ x4 B + ay,

T4
1-— 7Tz'j

. : iid
where again we will assume that a; ~ N(0, 72)

o Letting oy = Tay, a; i N(0, 1), the marginal likelihood is

L(B,p, 7 H/{prulwm,a“ﬁ M)} (i | 7%) dov;
= H/exp { ilogp(yij |xij77'ai76a/1')}¢(ai) da;
i=1 j=1
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1 Quadrature

. A generallzed linear mixed model
Nonlinear models

Approximate marginal likelihood

e Having now written the integral in the form [ f(z)¢(x)dz,
we can apply Gauss-Hermite quadrature:

L(B, 7 szkexp{zlogp(yijIﬂfija”kvﬁaﬂ)}
1 k=1 j=1

e We now have the likelihood in a form that, while not
necessarily simple, is at least manageable in terms of taking
gradients to find the score and information
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sian Quadrature

. A generalized linear mixed model
Nonlinear models

Gaussian quadrature in software

e Quadrature is the most accurate method for integrated
likelihood when the random-effects dimension is small
(typically 1-3)

e Unfortunately, the number of points required increases
exponentially with dimension (K¢), so it doesn't scale well to
high-dimensional random effects (Laplace approximations are
used here instead)

e For example, 1me4: :glmer () uses adaptive Gaussian
quadrature (AGQ) for random-intercept models, but falls back
to Laplace when multiple random effects appear
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sian Quadrature

. A generalized linear mixed model
Nonlinear models

Simulation case study

e As we did with the linear models, let's compare this marginal
likelihood approach with some other plausible ways of
analyzing this data

e Naive: As before, ignore the «; effects completely and just fit
a standard logistic regression

o Profile: As before, fit a standard logistic regression with
n + 1 parameters

e Conditional: The method we derived in the previous lecture,
where we form a conditional likelihood from pairs such that

Yi1 +yiz =1
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Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models

Results

Simulation case study results (n = 100):

method Mean RMSE
Naive 0.63 0.40
Profile 2.24 1.60
Conditional  1.12 0.52
Marginal 0.96 0.31
Data were simulated with 8 = 1; 72 = 4; 1,000 independent

replications
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Gaussian Quadrature

. A generalized linear mixed model
Nonlinear models

RENMES

e As we would expect from our earlier analytical look at this
problem, the profile MLE is biased upwards, while the naive
MLE is biased downward

e The conditional and marginal likelihood approaches both look
reasonable, although as before, the marginal likelihood mixed
model has a somewhat smaller SE (primarily due to making
stronger assumptions, of course)
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