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Introduction

@ In our last lecture, we introduced the Cox partial likelihood;
today, we will go over how to solve for 3, the maximum
(partial) likelihood estimator

@ As in previous models, this will require working out the score
vector and Hessian matrix and applying an iterative
Newton-Raphson procedure

@ On a superficial level this procedure is similar to our other
regression models, but the details are quite different: although
the observations are independent, we can no longer treat the
partial likelihood contributions from each observation in
isolation
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Partial |Ike|IhOOd at—rlsk indicator

@ Recall the Cox partial likelihood (PL):

exp(x] B)
Yker(;) eXp(X[B)’

LB =1]

where j indexes the observed failure times and R(t) is the set
of observations at risk at time ¢

@ The denominator in the expression above is also sometimes
written as

S Vit exp(x] B).
k=1

where Y;(t) is an at-risk indicator, equal to 1 if subject i is at
risk at time ¢, and 0 otherwise
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Cox PL in terms of individual weights

@ As an alternative, it is often convenient to express the
likelihood as a product of terms for each individual, as
opposed to each failure time

e To simplify the expression, let w; = exp(x;fﬁ); the cox partial
likelihood can now be written as

d;
v - T{ 5 )

i

@ Expressing the partial likelihood in this way emphasizes the
fact that the model assigns weights w; to the relative
likelihood that individual ¢ will fail compared to the other
subjects at risk
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Comments

@ Note that the d; exponent ensures that only the observations
at which a failure is observed contribute to the likelihood

@ However, because each subject affects the total hazard ) w;
over all the failure times at which they are in the risk set, the
contribution that subject ¢ makes to the likelihood is not
limited to the ith term in the product

@ Because this sum will appear many times in our derivations
today, | will denote it W;:

Wz‘zzwj,
R(t:)

where W; represents the total hazard for all subjects at risk
for the time at which subject ¢ fails
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Failure probabilities

@ The relative probability of failure for subject 7 is given by w;;
let us denote the absolute probability of failure for subject ¢ at
time ¢; as m;;:

w;
T = Yi(t:) —=

@ Note, of course, that this probability is absolute only in the

conditional sense, given that a failure occurs at time ¢;
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The Cox P

Log-likelihood

@ The (partial) log-likelihood is therefore
(= Zdilogwi — ZdilogWi
i i

= Zdim - Zdi log W;
i i

@ As we begin to take derivatives, keep in mind that the W;
term contains many n terms in addition to n;
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Score (with respect to )

@ Solving for B involves deriving the score equations and setting
them equal to zero

@ Let us begin by evaluating the partial derivative of the
likelihood with respect to the kth linear predictor:

ank —dk_zﬂ'kz i

@ Thus, we can write the score with respect to the vector of
linear predictors as

where P is an n x n matrix with elements 7;;
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Score (with respect to (3)

@ As we have seen before, by the chain rule the score with
respect to 3 is therefore

u(8) = X"(d - Pd)

@ Alternatively, we can express the score equations as

where E;x = >, x;m;; can be thought of as the expected
value of the covariate vector at the jth failure time given the
probability distribution implied by the model
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Hessian

Hessian (with respect to )

@ The score, of course, is nonlinear in 3, meaning that we will
have to apply a Taylor series expansion in order to solve it

@ This, in turn, involves finding second derivatives: i.e., the
Hessian matrix

@ Let us start with the diagonal elements (with respect to the
linear predictors):

d; 7Tkz 1 — Tki
ank Z )

@ Similarly,
AL
377k877] XZ: ke
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Hessian (with respect to (3)

@ Again, applying the chain rule we obtain the Hessian with
respect to 3:

H(IB) = _XTWX7

where W denotes the (non-diagonal) matrix whose terms are
given on the previous slide, with signs reversed (note that W
is unrelated to W;; my apologies if the notation is confusing)

o Alternatively, one can express the Hessian as

—H(B) = Y 3 (= Byx) (e — Ejx)”,

ik
where j here indexes the observed failure times
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Newton-Raphson algorithm

@ As we have seen previously with the exponential and Weibull
regression models, the Newton-Raphson algorithm is an
effective, efficient iterative procedure that converges to the
MLE (usually)

@ For Cox regression, the Newton-Raphson update is given by
By = XTWX) 71X (d - Pd) + B,

where W and P are evaluated at B(m), the current value of
the regression coefficients
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Crude R code

for (i in 1:20) {
eta <- X %*% b
haz <- as.numeric(exp(eta)) # w[il
rsk <- rev(cumsum(rev(haz))) # W[i]
P <- outer(haz, rsk, '/')
P [upper.tri(P)] <- 0
W <- -P %*% diag(d) %*% t(P)
diag(W) <- diag(P %*} diag(d) %*% t(1-P))
b <= solve(t(X)%x%Wixlh X) %x% t(X) %x% (d - Phx%d) + b

The above code assumes that the data has been sorted by time on
study, and assumes no ties are present
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Algorithm and convergence

Comments

@ The code on the previous slide is crude for several reasons:

o It could be faster/more efficient

o It doesn't check for convergence

e It can occasionally fail to converge, because it doesn't
implement step-halving when needed

@ You are tasked with addressing the last two shortcomings on
your next homework assignment
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Examples: pbc data

Some examples for how well Newton-Raphson works on the pbc

data:
@ Model contains trt, stage, and hepato: Converges in 4
iterations
@ Model contains trt, stage, hepato, and bili: Fails to
converge

@ Model contains trt, stage, hepato, and bili, but we
employ step-halving: Converges in ~ 20 iterations
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Conditional step-halving

@ The survival package, however, can fit the Cox model with
trt, stage, hepato, and bili in just 6 iterations ...how
does it do that?

@ The fundamental tradeoff here is between stability and speed:
step-halving slows down convergence (intentionally!), but
provides stability

@ It would be desirable to use Newton-Raphson as a default, but
have some sort of check in place that uses step-halving when
problems arise
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Likelihood checking

@ It turns out that this is fairly straightforward to accomplish

o Let ,5 denote the Newton-Raphson update, and consider the
following procedure:
(1) Calculate e(,é(m))
(2) Calculate 6(,6)
(3) If E(ﬁ) > f(,@ y), then ﬁ(mﬂ) — ,5; otherwise,
Bm+1) < 38+ 3B(m)
@ Using this procedure, we can solve for B in 6 iterations, using
step-halving only once, on the initial update
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Guaranteed convergence?

@ The procedure on the previous page almost always works, but
is still not guaranteed to converge

@ The reason is that step halving might not be enough: it is
possible that £(3 B+ Qﬁ(m ) is still smaller than 6(,8( )

@ To guarantee convergence, we need to iteratively reapply the
step-halving: consider i, %, %, ... until we reach a step size
small enough that the likelihood does, in fact, increase

@ Typically, this is not necessary, but this kind of check is

necessary to ensure that the likelihood goes up with every
iteration, even in pathological cases
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@ As a final comment, note that we are ignoring the issue of
tied observations, even though there are in fact a few ties in
the pbc data

@ However, unless there are a large number of ties, this is
typically a very minor issue:

trt stage  hepato bili
Crude -0.15530 0.62157 0.34860 0.13358
survival -0.15473 0.62138 0.34854 0.13353

@ We will, however, discuss ties more carefully in a future lecture
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