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Introduction

e Today we will begin discussing regression models for
time-to-event data

@ There are a number of ways one could think about modeling
the dependency between the time to an event and the factors
that might affect it

@ The two most common approaches are known as proportional
hazards models and accelerated failure time models

Patrick Breheny Survival Data Analysis (BIOS 7210)



Exponential regression

The model
Example S .

Proportional hazards

o We'll start with proportional hazards models

@ As the name implies, the idea here is to model the hazard
function directly:

Ai(t) = A(t) exp(x) B)

@ Here, the covariates act in a multiplicative manner upon the
hazard function; note that the exponential function ensures
that \;(t) is always positive

@ In this model, the hazard function for the ith subject always
has the same general shape A(), but can be, say, doubled or
halved depending on a patient’s risk factors
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Exponential regression

@ In general, any hazard function can be used; today, we'll
restrict attention to the constant hazard for the sake of
simplicity

@ Thus, the exponential regression model is:
Ai(t) = Nexp(xI'B)

@ Note that if x; contains an intercept term, we will have a
problem with identifiability — there is no way to distinguish 5
and A
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Identifiability

e For a variety of reasons (convenience, simplicity, numerical
stability, accuracy of approximate inferential procedures), it is
preferable to estimate 3y rather than A, so this is the
parameterization we will use

@ Of course, having estimated [y, one can easily obtain
estimates and confidence intervals for A through the
transformation A = exp(f)

@ In today’s lecture notes, we will discuss how to estimate the
regression coefficients and carry out inference concerning
them, and then illustrate these results using the pbc data
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Solving a nonlinear system of equations

@ Maximum likelihood estimation of 3 is complicated in
exponential regression by the need to solve a nonlinear system
of equations

@ This cannot be done in closed form; some sort of iterative
procedure is required

@ The basic idea is to construct a linear approximation to the
nonlinear system of equations, solve for B re-approximate,
and so on until convergence (this is known as the
Newton-Raphson algorithm)

o We will begin by working out the score and Hessian with
respect to the linear predictor, n; = X;rﬁ
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Log-likelihood, score, and Hessian

o Under independent censoring and assuming Tj|x; ~ Exp();),
the log-likelihood contribution of the ith subject in
exponential regression is

Ci(mi) = din; — tie™
@ The score and Hessian are therefore

ui(m;) = di — tie™
Hi(n;) = —t;e™
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Vector/matrix versions

@ Letting p denote the vector with ¢th element ¢, and W
denote the diagonal matrix with ith diagonal element ¢;e™,
we can rewrite the score and Hessian as

u(n) =d-—p
H(n) = -W

@ As we remarked earlier, solving for u = 0 is complicated
because w is a nonlinear function of n; thus, consider the
Taylor series approximation about 0

u(n) =~ u(f) + H(7)(n — )
=d—p+W(n-—n)

where i and W are fixed at i
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Solving for 3

@ So far, of course, we've ignored the fact that n = X3 and
that we're really estimating 3

@ Substituting this expression into the previous equation and
solving for 3, we obtain

B (XTWX)'X"(d - p)+B

@ Again, this is an iterative process, which means that this is
not an exact solution for 3; rather, we must solve for 3,
recompute g and W, re-solve for 3, and so on

@ The Newton-Raphson algorithm will converge to the MLE
(although this is not absolutely guaranteed) provided that the
likelihood is log-concave and coercive, both of which
(typically) hold for exponential regression
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Crude R code

@ Below is some crude R code providing an implementation of
this algorithm

b <- rep(0, ncol(X))
for (i in 1:20) {

eta <- as.numeric(X%*%b)

mu <- txexp(eta)

W <- diag(t*exp(eta))

b <- solve(t(X) %*% W %*% X) %*% t(X) %*% (d-mu) + b
}

@ This is crude in the sense that it isn't as efficient as it could
be and in that it assumes convergence will occur in 20
iterations; a better algorithm would check for convergence by
examining whether 3 has stopped changing
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Wald approach

@ Since B is the MLE, our derivation of the Wald results from
earlier means that

BAN(BI);

we just have to work out the information matrix with respect
to B

@ Applying the chain rule, we have
BN (B (X"WX)™)

@ It is very easy, therefore, to construct confidence intervals for
Bj with Bj & z1_o2SE;, where SE; = | /(XTWX) !
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Likelihood ratio approach

@ The likelihood ratio approach, while desirable, is somewhat
complicated in multiparameter settings where we lack
closed-form estimates

o Consider the problem of obtaining a likelihood ratio
confidence interval for j3;

o If 3; was the only parameter, this is simply a root-finding
problem in which we determine the values 57, and Sy where

2(0(B;) — 0(8)) = X395
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The profile likelihood

@ However, (3; is not the only parameter, and in particular, if 3;
was restricted to equal (g, all the other MLEs would change
as a consequence

@ In other words, evaluating £(3;) is not simple, because it
involves re-solving for ,@_j at every value of 3; that we try out
in our root-finding procedure

@ The likelihood

L(B;, B-;(8;))
is known as the profile likelihood, and the re-solving procedure

is sometimes referred to as profiling

@ Note that obtaining a confidence interval using either the
score or likelihood ratio approaches involve profiling, but the
Wald approach does not
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Availability of LRCls

@ In summary, it is much faster and more convenient to obtain
Wald Cls, since score and LR Cls involve profiling

@ Certainly, it is possible to write code that carries out profiling,
and some software packages have implemented functions to
do this for you (e.g., glm)

o Often, however, likelihood ratio confidence intervals are not
provided by software packages; in particular, the survival
package does not provide them
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pbc data: Setup

@ To illustrate, let's fit an exponential regression model to the
pbc data, and include the following four factors as predictors:

o trt: Treatment (D-penicillamine, placebo)

stage: Histologic stage of disease (1, 2, 3, 4)
hepato: Presence of hepatomegaly (enlarged liver)
bili: Serum bilirunbin (mg/dl)

@ We can fit this model using our crude R code (the survival
package does have a function for exponential regression, but
its setup doesn’t exactly match ours today, so I'm postponing
coverage of the function to next week)
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Interpretation of coefficients

@ As in other regression models, the interpretation of the
regression coefficients involves the effect of changing one
factor while all others remain the same

@ Consider a hypothetical comparison between two individuals
whose explanatory variables are the same, except for variable
J. where it differs by ; = x1; — x2;:

1— = exp(djﬁj)
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Hazard ratios

o Note that for any proportional hazard model, A;(t)/A2(t) is a
constant with respect to time
@ This constant is known as the hazard ratio, and typically

abbreviated HR, although some authors refer to it as the
relative risk (RR)

@ Thus, the interpretation of a regression coefficient in a
proportional hazards model is that ¢/ is the hazard ratio for a
d-unit change in that covariate

o In particular, HR = ¢” for a one-unit change

@ So, for stage in our pbc example, HR = 0564 = 1.76; a
one-unit change in stage increases a patient’s hazard by 76%
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trt —_— 0.39
stage < 0.0001
hepato 0.10
bili —_— < 0.0001
I T T T 1
0.5 1.0 1.5 2.0 25

Hazard ratio
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Predicted survival: Some examples

We can also predict survival curves at the individual level

Progression—free survival
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Uncertainty and information in the multiparameter setting

@ Let's take a moment now to consider the subtle distinction
-1 -1
between (I;;)~" and (I7");;
o The second expression, (I"1);;, is the correct one to use when
calculating Wald standard errors, because it accounts for the
uncertainty in all the other regression coefficient estimates

o The first expression, (I;;)~!, would be correct only if some
all-knowing oracle told us exactly what all the values of 3_;
were
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An example

@ To make this more concrete, let's consider the standard error
of the coefficient for hepatomegaly

@ The actual Wald SE is /(I71);; = 0.126
@ The “naive” standard error is \/(I;;)~! = 0.024

@ As we have remarked previously, hepatomegaly is strongly
correlated with stage (it's also moderately correlated with
bilirubin); any uncertainty in the true effect of stage means
increased uncertainty about the effect of hepatomegaly

@ The “naive” approach fails to account for this, and greatly
underestimates the true uncertainty
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Diagnostic plot (original scale)

As a diagnostic plot to check whether the exponential distribution
seems reasonable, we can plot the Kaplan-Meier estimate against
the best exponential fit:
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Diagnostic plot (linear)

Alternatively, since the exponential model implies —log S(t) = ¢,
we can obtain a linear version of the diagnostic plot:
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Limitations

@ These diagnostic plots, although useful for identifying gross
lack of fit, have some clear limitations

° The main limitation is that our model does not assume
T; ~ Exp()), but rather that Tj|x; ~ Exp()\;)

@ Thus, we may see a departure from linearity in the plot on the
previous page, but it doesn't necessarily imply a violation of
model assumptions
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For example, consider this simulated diagnostic plot for two
groups, each independently following an exponential distribution,
but with different rate parameters:
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Comments

@ Nevertheless, these diagnostic plots are generally useful
provided that the covariates do not have an overwhelming
effect on survival (covariates do not “dominate”)

@ If any covariates do have overwhelming effects, one may
considering stratifying the diagnostic plots

@ For example, we may wish to construct separate diagnostic
plots for each stage in our pbc example
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Residuals?

@ In linear regression, of course, we don't face these issues
because we can directly examine residuals

@ In survival analysis, however, residuals are more complicated
in that some of them will be censored

@ There are ways of dealing with this, and of obtaining residuals
for time-to-event regression models, but we will postpone this
discussion for a later lecture
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