

Proportional hazards regression

Patrick Breheny

October 8

Introduction

- Today we will begin discussing regression models for time-to-event data
- There are a number of ways one could think about modeling the dependency between the time to an event and the factors that might affect it
- The two most common approaches are known as *proportional hazards models* and *accelerated failure time models*

Proportional hazards

- We'll start with proportional hazards models
- As the name implies, the idea here is to model the hazard function directly:

$$\lambda_i(t) = \lambda(t) \exp(\mathbf{x}_i^T \boldsymbol{\beta})$$

- Here, the covariates act in a multiplicative manner upon the hazard function; note that the exponential function ensures that $\lambda_i(t)$ is always positive
- In this model, the hazard function for the i th subject always has the same general shape $\lambda(t)$, but can be, say, doubled or halved depending on a patient's risk factors

Exponential regression

- In general, any hazard function can be used; today, we'll restrict attention to the constant hazard for the sake of simplicity
- Thus, the *exponential regression* model is:

$$\lambda_i(t) = \lambda \exp(\mathbf{x}_i^T \boldsymbol{\beta})$$

- Note that if \mathbf{x}_i contains an intercept term, we will have a problem with identifiability – there is no way to distinguish β_0 and λ

Identifiability

- For a variety of reasons (convenience, simplicity, numerical stability, accuracy of approximate inferential procedures), it is preferable to estimate β_0 rather than λ , so this is the parameterization we will use
- Of course, having estimated β_0 , one can easily obtain estimates and confidence intervals for λ through the transformation $\lambda = \exp(\beta_0)$
- In today's lecture notes, we will discuss how to estimate the regression coefficients and carry out inference concerning them, and then illustrate these results using the pbc data

Solving a nonlinear system of equations

- Maximum likelihood estimation of β is complicated in exponential regression by the need to solve a nonlinear system of equations
- This cannot be done in closed form; some sort of iterative procedure is required
- The basic idea is to construct a linear approximation to the nonlinear system of equations, solve for $\hat{\beta}$, re-approximate, and so on until convergence (this is known as the *Newton-Raphson algorithm*)
- We will begin by working out the score and Hessian with respect to the *linear predictor*, $\eta_i = \mathbf{x}_i^T \beta$

Log-likelihood, score, and Hessian

- Under independent censoring and assuming $\tilde{T}_i | \mathbf{x}_i \sim \text{Exp}(\lambda_i)$, the log-likelihood contribution of the i th subject in exponential regression is

$$\ell_i(\eta_i) = d_i \eta_i - t_i e^{\eta_i}$$

- The score and Hessian are therefore

$$u_i(\eta_i) = d_i - t_i e^{\eta_i}$$

$$H_i(\eta_i) = -t_i e^{\eta_i}$$

Vector/matrix versions

- Letting μ denote the vector with i th element $t_i e^{\eta_i}$ and \mathbf{W} denote the diagonal matrix with i th diagonal element $t_i e^{\eta_i}$, we can rewrite the score and Hessian as

$$\mathbf{u}(\boldsymbol{\eta}) = \mathbf{d} - \mu$$

$$\mathbf{H}(\boldsymbol{\eta}) = -\mathbf{W}$$

- As we remarked earlier, solving for $\mu = \mathbf{0}$ is complicated because μ is a nonlinear function of $\boldsymbol{\eta}$; thus, consider the Taylor series approximation about $\tilde{\boldsymbol{\eta}}$

$$\begin{aligned}\mathbf{u}(\boldsymbol{\eta}) &\approx \mathbf{u}(\tilde{\boldsymbol{\eta}}) + \mathbf{H}(\tilde{\boldsymbol{\eta}})(\boldsymbol{\eta} - \tilde{\boldsymbol{\eta}}) \\ &= \mathbf{d} - \mu + \mathbf{W}(\tilde{\boldsymbol{\eta}} - \boldsymbol{\eta})\end{aligned}$$

where μ and \mathbf{W} are fixed at $\tilde{\boldsymbol{\eta}}$

Solving for β

- So far, of course, we've ignored the fact that $\eta = \mathbf{X}\beta$ and that we're really estimating β
- Substituting this expression into the previous equation and solving for β , we obtain

$$\hat{\beta} \leftarrow (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{d} - \boldsymbol{\mu}) + \tilde{\beta}$$

- Again, this is an iterative process, which means that this is not an exact solution for $\hat{\beta}$; rather, we must solve for $\hat{\beta}$, recompute $\boldsymbol{\mu}$ and \mathbf{W} , re-solve for $\hat{\beta}$, and so on
- The Newton-Raphson algorithm will converge to the MLE (although this is not absolutely guaranteed) provided that the likelihood is log-concave and coercive, both of which (typically) hold for exponential regression

Crude R code

- Below is some crude R code providing an implementation of this algorithm

```
b <- rep(0, ncol(X))
for (i in 1:20) {
  eta <- as.numeric(X%*%b)
  mu <- t*exp(eta)
  W <- diag(t*exp(eta))
  b <- solve(t(X) %*% W %*% X) %*% t(X) %*% (d-mu) + b
}
```

- This is crude in the sense that it isn't as efficient as it could be and in that it assumes convergence will occur in 20 iterations; a better algorithm would check for convergence by examining whether $\hat{\beta}$ has stopped changing

Wald approach

- Since $\hat{\beta}$ is the MLE, our derivation of the Wald results from earlier means that

$$\hat{\beta} \sim N(\beta, \mathbf{I}^{-1});$$

we just have to work out the information matrix with respect to β

- Applying the chain rule, we have

$$\hat{\beta} \sim N(\beta, (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1})$$

- It is very easy, therefore, to construct confidence intervals for β_j with $\hat{\beta}_j \pm z_{1-\alpha/2} \text{SE}_j$, where $\text{SE}_j = \sqrt{(\mathbf{X}^T \mathbf{W} \mathbf{X})_{jj}^{-1}}$

Likelihood ratio approach

- The likelihood ratio approach, while desirable, is somewhat complicated in multiparameter settings where we lack closed-form estimates
- Consider the problem of obtaining a likelihood ratio confidence interval for β_j
- If β_j was the only parameter, this is simply a root-finding problem in which we determine the values β_L and β_U where $2(\ell(\hat{\beta}_j) - \ell(\beta_j)) = \chi^2_{1,.95}$

The profile likelihood

- However, β_j is not the only parameter, and in particular, if β_j was restricted to equal β_L , all the other MLEs would change as a consequence
- In other words, evaluating $\ell(\beta_j)$ is not simple, because it involves re-solving for $\hat{\beta}_{-j}$ at every value of β_j that we try out in our root-finding procedure
- The likelihood

$$L(\beta_j, \hat{\beta}_{-j}(\beta_j))$$

is known as the *profile likelihood*, and the re-solving procedure is sometimes referred to as *profiling*

- Note that obtaining a confidence interval using either the score or likelihood ratio approaches involve profiling, but the Wald approach does not

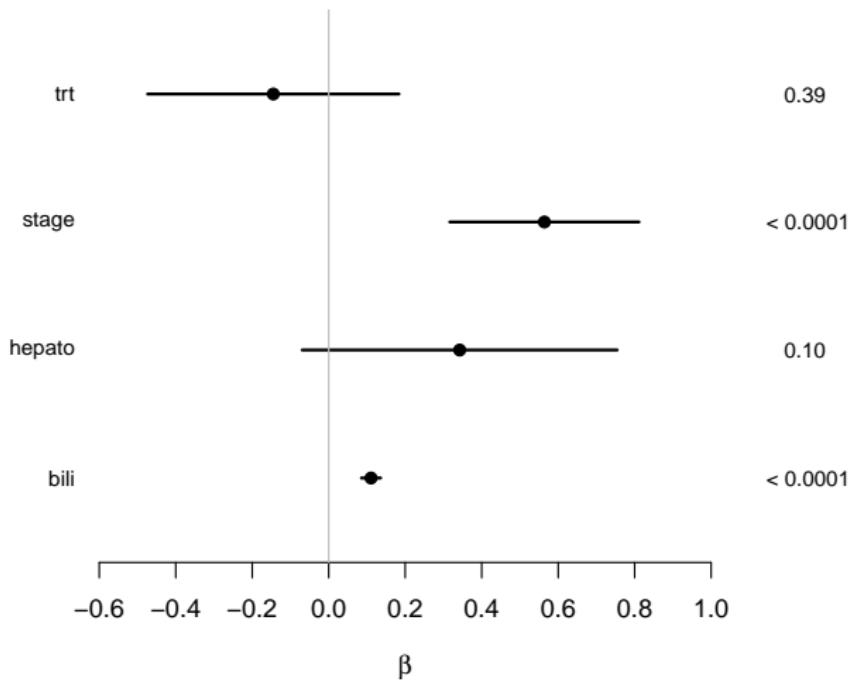
Availability of LR CIs

- In summary, it is much faster and more convenient to obtain Wald CIs, since score and LR CIs involve profiling
- Certainly, it is possible to write code that carries out profiling, and some software packages have implemented functions to do this for you (e.g., `glm`)
- Often, however, likelihood ratio confidence intervals are not provided by software packages; in particular, the `survival` package does not provide them

pbc data: Setup

- To illustrate, let's fit an exponential regression model to the pbc data, and include the following four factors as predictors:
 - trt: Treatment (D-penicillamine, placebo)
 - stage: Histologic stage of disease (1, 2, 3, 4)
 - hepato: Presence of hepatomegaly (enlarged liver)
 - bili: Serum bilirubin (mg/dl)
- We can fit this model using our crude R code (the survival package does have a function for exponential regression, but its setup doesn't exactly match ours today, so I'm postponing coverage of the function to next week)

Results



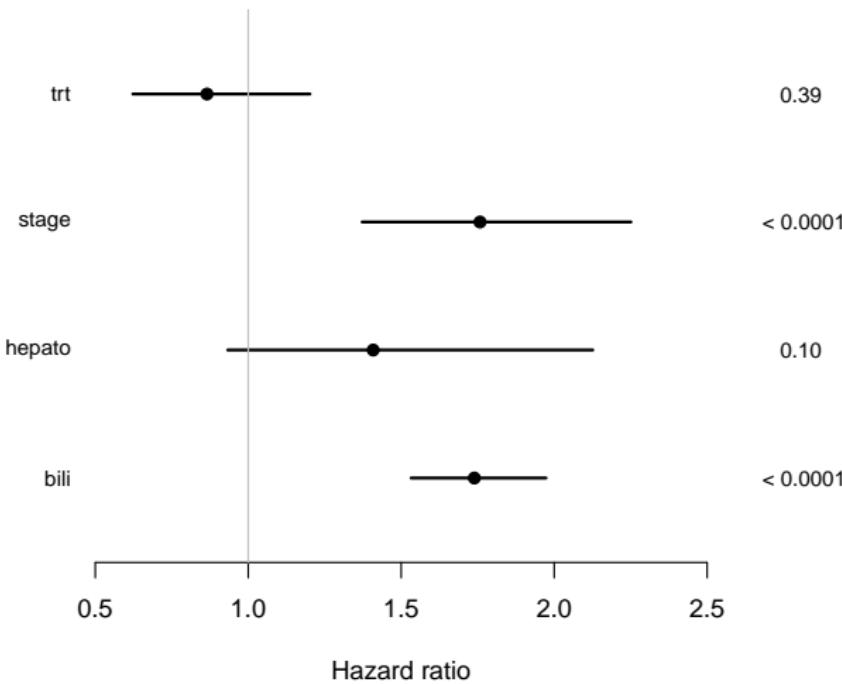
Interpretation of coefficients

- As in other regression models, the interpretation of the regression coefficients involves the effect of changing one factor while all others remain the same
- Consider a hypothetical comparison between two individuals whose explanatory variables are the same, except for variable j , where it differs by $\delta_j = x_{1j} - x_{2j}$:

$$\frac{\lambda_1(t)}{\lambda_2(t)} = \exp(\delta_j \beta_j)$$

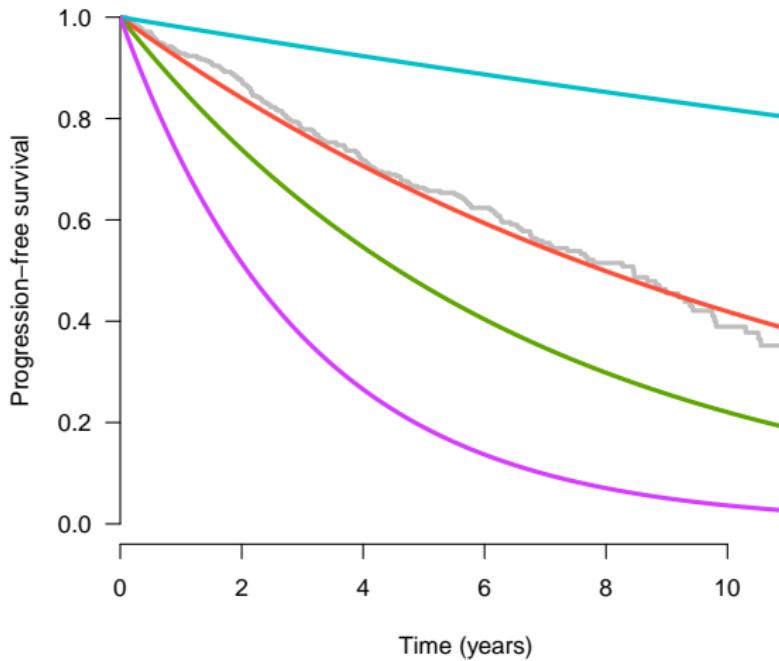
Hazard ratios

- Note that for any proportional hazard model, $\lambda_1(t)/\lambda_2(t)$ is a constant with respect to time
- This constant is known as the *hazard ratio*, and typically abbreviated HR, although some authors refer to it as the *relative risk* (RR)
- Thus, the interpretation of a regression coefficient in a proportional hazards model is that $e^{\delta\beta}$ is the hazard ratio for a δ -unit change in that covariate
- In particular, $HR = e^{\beta}$ for a one-unit change
- So, for stage in our pbc example, $HR = e^{0.564} = 1.76$; a one-unit change in stage increases a patient's hazard by 76%

Results (hazard ratios; $\delta_{\text{bili}} = 5$)

Predicted survival: Some examples

We can also predict survival curves at the individual level



Uncertainty and information in the multiparameter setting

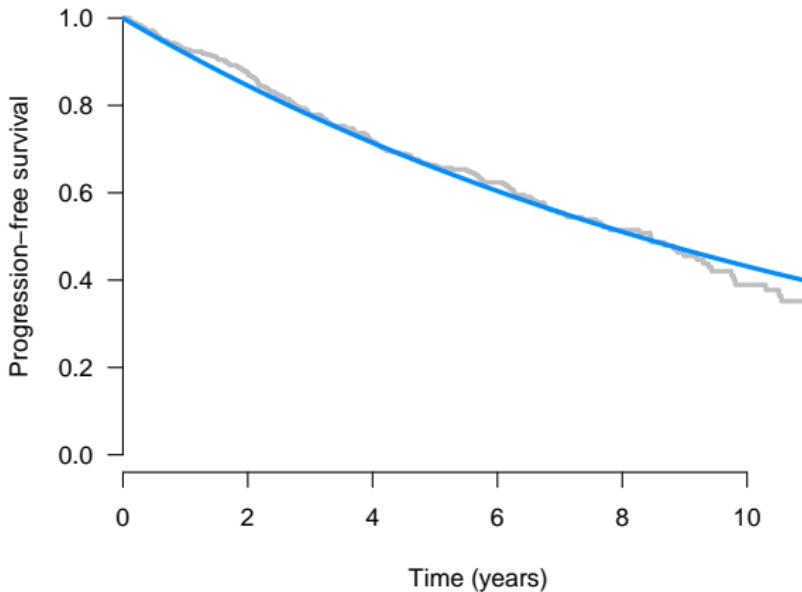
- Let's take a moment now to consider the subtle distinction between $(\mathbf{I}_{jj})^{-1}$ and $(\mathbf{I}^{-1})_{jj}$
- The second expression, $(\mathbf{I}^{-1})_{jj}$, is the correct one to use when calculating Wald standard errors, because it accounts for the uncertainty in all the other regression coefficient estimates
- The first expression, $(\mathbf{I}_{jj})^{-1}$, would be correct only if some all-knowing oracle told us exactly what all the values of β_{-j} were

An example

- To make this more concrete, let's consider the standard error of the coefficient for hepatomegaly
- The actual Wald SE is $\sqrt{(\mathbf{I}^{-1})_{jj}} = 0.126$
- The “naïve” standard error is $\sqrt{(\mathbf{I}_{jj})^{-1}} = 0.024$
- As we have remarked previously, hepatomegaly is strongly correlated with stage (it's also moderately correlated with bilirubin); any uncertainty in the true effect of stage means increased uncertainty about the effect of hepatomegaly
- The “naïve” approach fails to account for this, and greatly underestimates the true uncertainty

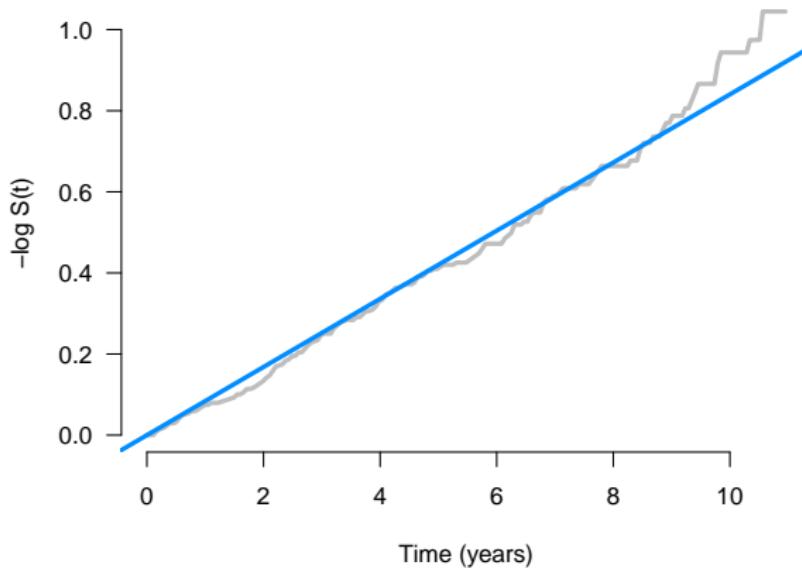
Diagnostic plot (original scale)

As a diagnostic plot to check whether the exponential distribution seems reasonable, we can plot the Kaplan-Meier estimate against the best exponential fit:



Diagnostic plot (linear)

Alternatively, since the exponential model implies $-\log S(t) = \lambda t$, we can obtain a linear version of the diagnostic plot:

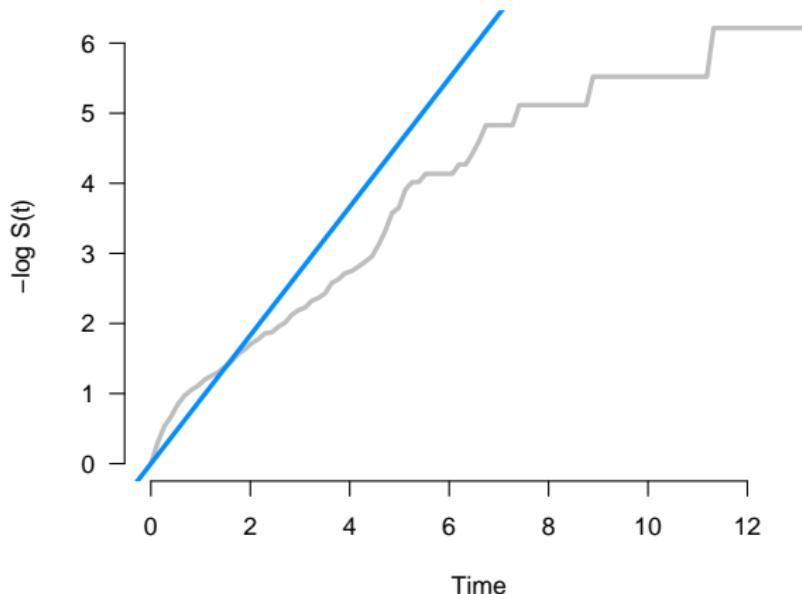


Limitations

- These diagnostic plots, although useful for identifying gross lack of fit, have some clear limitations
- The main limitation is that our model does not assume $\tilde{T}_i \sim \text{Exp}(\lambda)$, but rather that $\tilde{T}_i | \mathbf{x}_i \sim \text{Exp}(\lambda_i)$
- Thus, we may see a departure from linearity in the plot on the previous page, but it doesn't necessarily imply a violation of model assumptions

Diagnostic plot (simulated)

For example, consider this simulated diagnostic plot for two groups, each independently following an exponential distribution, but with different rate parameters:



Comments

- Nevertheless, these diagnostic plots are generally useful provided that the covariates do not have an overwhelming effect on survival (covariates do not “dominate”)
- If any covariates do have overwhelming effects, one may consider stratifying the diagnostic plots
- For example, we may wish to construct separate diagnostic plots for each stage in our pbc example

Residuals?

- In linear regression, of course, we don't face these issues because we can directly examine residuals
- In survival analysis, however, residuals are more complicated in that some of them will be censored
- There are ways of dealing with this, and of obtaining residuals for time-to-event regression models, but we will postpone this discussion for a later lecture