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Introduction

Today we will begin discussing regression models for
time-to-event data

There are a number of ways one could think about modeling
the dependency between the time to an event and the factors
that might affect it

The two most common approaches are known as proportional
hazards models and accelerated failure time models
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Proportional hazards

We’ll start with proportional hazards models

As the name implies, the idea here is to model the hazard
function directly:

λi(t) = λ(t) exp(xTi β)

Here, the covariates act in a multiplicative manner upon the
hazard function; note that the exponential function ensures
that λi(t) is always positive

In this model, the hazard function for the ith subject always
has the same general shape λ(t), but can be, say, doubled or
halved depending on a patient’s risk factors
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Exponential regression

In general, any hazard function can be used; today, we’ll
restrict attention to the constant hazard for the sake of
simplicity

Thus, the exponential regression model is:

λi(t) = λ exp(xTi β)

Note that if xi contains an intercept term, we will have a
problem with identifiability – there is no way to distinguish β0
and λ
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Identifiability

For a variety of reasons (convenience, simplicity, numerical
stability, accuracy of approximate inferential procedures), it is
preferable to estimate β0 rather than λ, so this is the
parameterization we will use

Of course, having estimated β0, one can easily obtain
estimates and confidence intervals for λ through the
transformation λ = exp(β0)

In today’s lecture notes, we will discuss how to estimate the
regression coefficients and carry out inference concerning
them, and then illustrate these results using the pbc data

Patrick Breheny Survival Data Analysis (BIOS 7210) 5/28



Exponential regression
Example

The model
Solving for the MLE
Inference

Solving a nonlinear system of equations

Maximum likelihood estimation of β is complicated in
exponential regression by the need to solve a nonlinear system
of equations

This cannot be done in closed form; some sort of iterative
procedure is required

The basic idea is to construct a linear approximation to the
nonlinear system of equations, solve for β̂, re-approximate,
and so on until convergence (this is known as the
Newton-Raphson algorithm)

We will begin by working out the score and Hessian with
respect to the linear predictor, ηi = xTi β
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Log-likelihood, score, and Hessian

Under independent censoring and assuming T̃i|xi ∼ Exp(λi),
the log-likelihood contribution of the ith subject in
exponential regression is

`i(ηi) = diηi − tieηi

The score and Hessian are therefore

ui(ηi) = di − tieηi

Hi(ηi) = −tieηi
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Vector/matrix versions

Letting µ denote the vector with ith element tie
ηi and W

denote the diagonal matrix with ith diagonal element tie
ηi ,

we can rewrite the score and Hessian as

u(η) = d− µ

H(η) = −W

As we remarked earlier, solving for µ = 0 is complicated
because µ is a nonlinear function of η; thus, consider the
Taylor series approximation about η̃

u(η) ≈ u(η̃) +H(η̃)(η − η̃)

= d− µ+W(η̃ − η)

where µ and W are fixed at η̃
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Solving for β

So far, of course, we’ve ignored the fact that η = Xβ and
that we’re really estimating β

Substituting this expression into the previous equation and
solving for β, we obtain

β̂ ← (XTWX)−1XT (d− µ) + β̃

Again, this is an iterative process, which means that this is
not an exact solution for β̂; rather, we must solve for β̂,
recompute µ and W, re-solve for β̂, and so on

The Newton-Raphson algorithm will converge to the MLE
(although this is not absolutely guaranteed) provided that the
likelihood is log-concave and coercive, both of which
(typically) hold for exponential regression
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Crude R code

Below is some crude R code providing an implementation of
this algorithm

b <- rep(0, ncol(X))

for (i in 1:20) {

eta <- as.numeric(X%*%b)

mu <- t*exp(eta)

W <- diag(t*exp(eta))

b <- solve(t(X) %*% W %*% X) %*% t(X) %*% (d-mu) + b

}

This is crude in the sense that it isn’t as efficient as it could
be and in that it assumes convergence will occur in 20
iterations; a better algorithm would check for convergence by
examining whether β̂ has stopped changing
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Wald approach

Since β̂ is the MLE, our derivation of the Wald results from
earlier means that

β̂
.∼ N

(
β, I−1

)
;

we just have to work out the information matrix with respect
to β

Applying the chain rule, we have

β̂
.∼ N

(
β, (XTWX)−1

)
It is very easy, therefore, to construct confidence intervals for

βj with β̂j ± z1−α/2SEj , where SEj =
√
(XTWX)−1

jj
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Likelihood ratio approach

The likelihood ratio approach, while desirable, is somewhat
complicated in multiparameter settings where we lack
closed-form estimates

Consider the problem of obtaining a likelihood ratio
confidence interval for βj

If βj was the only parameter, this is simply a root-finding
problem in which we determine the values βL and βU where
2(`(β̂j)− `(βj)) = χ2

1,.95
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The profile likelihood

However, βj is not the only parameter, and in particular, if βj
was restricted to equal βL, all the other MLEs would change
as a consequence

In other words, evaluating `(βj) is not simple, because it

involves re-solving for β̂−j at every value of βj that we try out
in our root-finding procedure

The likelihood

L(βj , β̂−j(βj))

is known as the profile likelihood, and the re-solving procedure
is sometimes referred to as profiling

Note that obtaining a confidence interval using either the
score or likelihood ratio approaches involve profiling, but the
Wald approach does not
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Availability of LRCIs

In summary, it is much faster and more convenient to obtain
Wald CIs, since score and LR CIs involve profiling

Certainly, it is possible to write code that carries out profiling,
and some software packages have implemented functions to
do this for you (e.g., glm)

Often, however, likelihood ratio confidence intervals are not
provided by software packages; in particular, the survival

package does not provide them
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pbc data: Setup

To illustrate, let’s fit an exponential regression model to the
pbc data, and include the following four factors as predictors:

trt: Treatment (D-penicillamine, placebo)
stage: Histologic stage of disease (1, 2, 3, 4)
hepato: Presence of hepatomegaly (enlarged liver)
bili: Serum bilirunbin (mg/dl)

We can fit this model using our crude R code (the survival

package does have a function for exponential regression, but
its setup doesn’t exactly match ours today, so I’m postponing
coverage of the function to next week)
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Results

●

●

●

●

β

   0.39

< 0.0001

   0.10

< 0.0001

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

trt

stage

hepato

bili
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Interpretation of coefficients

As in other regression models, the interpretation of the
regression coefficients involves the effect of changing one
factor while all others remain the same

Consider a hypothetical comparison between two individuals
whose explanatory variables are the same, except for variable
j, where it differs by δj = x1j − x2j :

λ1(t)

λ2(t)
= exp(δjβj)
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Hazard ratios

Note that for any proportional hazard model, λ1(t)/λ2(t) is a
constant with respect to time

This constant is known as the hazard ratio, and typically
abbreviated HR, although some authors refer to it as the
relative risk (RR)

Thus, the interpretation of a regression coefficient in a
proportional hazards model is that eδβ is the hazard ratio for a
δ-unit change in that covariate

In particular, HR = eβ for a one-unit change

So, for stage in our pbc example, HR = e0.564 = 1.76; a
one-unit change in stage increases a patient’s hazard by 76%
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Results (hazard ratios; δbili = 5)

●

●

●

●

Hazard ratio

   0.39

< 0.0001

   0.10

< 0.0001

0.5 1.0 1.5 2.0 2.5

trt

stage

hepato

bili
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Predicted survival: Some examples

We can also predict survival curves at the individual level

0.0

0.2

0.4

0.6

0.8

1.0

Time (years)

P
ro

gr
es

si
on

−
fr

ee
 s

ur
vi

va
l

0 2 4 6 8 10

Patrick Breheny Survival Data Analysis (BIOS 7210) 20/28



Exponential regression
Example

pbc example
Accounting for uncertainty in other parameters
Diagnostics

Uncertainty and information in the multiparameter setting

Let’s take a moment now to consider the subtle distinction
between (Ijj)

−1 and (I−1)jj

The second expression, (I−1)jj , is the correct one to use when
calculating Wald standard errors, because it accounts for the
uncertainty in all the other regression coefficient estimates

The first expression, (Ijj)
−1, would be correct only if some

all-knowing oracle told us exactly what all the values of β−j
were
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An example

To make this more concrete, let’s consider the standard error
of the coefficient for hepatomegaly

The actual Wald SE is
√
(I−1)jj = 0.126

The “näıve” standard error is
√

(Ijj)−1 = 0.024

As we have remarked previously, hepatomegaly is strongly
correlated with stage (it’s also moderately correlated with
bilirubin); any uncertainty in the true effect of stage means
increased uncertainty about the effect of hepatomegaly

The “näıve” approach fails to account for this, and greatly
underestimates the true uncertainty
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Diagnostic plot (original scale)

As a diagnostic plot to check whether the exponential distribution
seems reasonable, we can plot the Kaplan-Meier estimate against
the best exponential fit:
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Diagnostic plot (linear)

Alternatively, since the exponential model implies − logS(t) = λt,
we can obtain a linear version of the diagnostic plot:
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Limitations

These diagnostic plots, although useful for identifying gross
lack of fit, have some clear limitations

The main limitation is that our model does not assume
T̃i ∼ Exp(λ), but rather that T̃i|xi ∼ Exp(λi)

Thus, we may see a departure from linearity in the plot on the
previous page, but it doesn’t necessarily imply a violation of
model assumptions
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Diagnostic plot (simulated)

For example, consider this simulated diagnostic plot for two
groups, each independently following an exponential distribution,
but with different rate parameters:

0 2 4 6 8 10 12

0

1

2

3

4

5

6

Time

−
lo

g 
S

(t
)

Patrick Breheny Survival Data Analysis (BIOS 7210) 26/28



Exponential regression
Example

pbc example
Accounting for uncertainty in other parameters
Diagnostics

Comments

Nevertheless, these diagnostic plots are generally useful
provided that the covariates do not have an overwhelming
effect on survival (covariates do not “dominate”)

If any covariates do have overwhelming effects, one may
considering stratifying the diagnostic plots

For example, we may wish to construct separate diagnostic
plots for each stage in our pbc example
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Residuals?

In linear regression, of course, we don’t face these issues
because we can directly examine residuals

In survival analysis, however, residuals are more complicated
in that some of them will be censored

There are ways of dealing with this, and of obtaining residuals
for time-to-event regression models, but we will postpone this
discussion for a later lecture
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