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Introduction

@ Many assumptions go into regression models, and the Cox
proportional hazards model, despite making no assumptions
about the baseline hazard, is no exception

@ Diagnostic methods are useful in all types of regression
models to investigate the validity of those assumptions and
identify ways in which they might be violated

@ Residuals play a big role in regression method diagnostics

@ To build model diagnostics for Cox regression, we first need to
discuss methods for extending residuals to the case of
censored data

Patrick Breheny Survival Data Analysis (BIOS 7210) 2/42



Cumulative hazard transformation

@ We begin with the following useful theorem:

@ Theorem: Suppose T is a continuous nonnegative random
variable with cumulative hazard function A. Then the random
variable Y = A(T") follows an exponential distribution with
rate A = 1.

@ Thus, one way of checking the validity of a model is by
comparing the model’s estimates {A(¢;)} against the standard
exponential distribution
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Cox-Snell residuals
Assessing the functiona

Cox-Snell residuals

@ In the context of the proportional hazards model, we have

& = Ao(t;) exp(xL B),

although the idea is very general and can be applied to any
kind of model

@ The terms {¢;} are called the Cox-Snell residuals, although
“residual” is perhaps a misnomer, in that it's more of a
transformation than a residual
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Cox-Snell residuals
ing the functior

Diagnostic plot of Cox-Snell residuals: PBC data

@ Diagnostics based on Cox-Snell residuals are based on fitting a
Kaplan-Meier (or Nelson-Aalen) curve to {é;} and comparing
it to that of the standard exponential

@ For the PBC data with trt, stage, hepato, and bili

included, we have
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influence

Simulated example: Lack of fit

To illustrate the utility of the plot, let's simulate some data from a
lognormal AFT model and fit a Cox model (note that the PH
assumption is violated here):
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Zooming in

One shortcoming of this plot is that violations at small e values
tend to be hidden:
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Alternatively, one may consider plotting the standardized difference
between the fitted cumulative hazard and the standard
exponential, which reveals the lack of fit much more clearly:
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Residuals Cox-Snell residuals
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GVHD data

@ Stratification of the residuals according to one of the variables
in the model can also help to discover model violations

@ For example, in the GVHD data, here is what the overall plot
looks like:
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Cumulative hazard

We will discuss

Cox-Snell residuals

Residual

stratification in more detail in the next lecture
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Shortcomings of the Cox-Snell residual

@ One drawback to the Cox-Snell residuals is that they don't
provide much insight into why the model’s assumptions are
violated

@ It would be more appealing if each residual took on a positive
or negative value indicating whether they patient survived
longer, as opposed to shorter, that the model predicts, and by
how much
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Martingale residuals

o Consider, then, the following residual:

Thi = dl — Al(tl)
=d; — é&;
we have seen this quantity a few times already (one-sample

logrank test, score function for exponential regression)

@ This represents the discrepancy between the observed value of
a subject’s failure indicator and its expected value, integrated
over the time for which that patient was at risk

@ Positive values mean that the patient died sooner than
expected (according to the model); negative values mean that
the patient lived longer than expected (or were censored)
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Assessing the functior

Martingales

@ A stochastic process M (t) that satisfies (i) EM (t) = 0 for all
t and (ii) E{M(t)|M(s)} = M(s)} for all s <t is known in
statistics as a martingale

@ The stochastic process N (t fo , where N (t) is
the counting process that records whether the subject has
failed by time ¢ or not, satisfies these two properties

@ For this reason, the residuals {rn;} defined on the previous
slide are known as martingale residuals
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« Censored « Died / Liver failure

Martingale residual
U
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The large outlier is a patient with stage 4 cirrhosis and a bilirubin
concentration of 14.4 (96th percentile), yet survived 7 years

Patrick Breheny Survival Data Analysis (BIOS 7210)



Assessing the functiona

residuals

@ Martingale residuals can be obtained from the survival
package by calling residuals(fit), where £it is a fitted
coxph model (resid(fit) also works as a shortcut)

@ The martingale residuals are returned by default, although
seven other options are available and can be requested by
specifying the type option

@ It may be noted that type=°coxsnell’ is not one of the
options, although you can easily calculate the Cox-Snell
residuals from the martingale residuals
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Comments

@ Martingale residuals are very useful and can be used for many
of the usual purposes that we use residuals for in other models
(identifying outliers, choosing a functional form for the
covariate, etc.)

@ However, the primary drawback to the martingale residual is

its clear asymmetry (its upper bound is 1, but it has no lower
bound)

@ For this reason, I'll hold off on these plots until we discuss a
more symmetric, normally distributed residual
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Assessing the functiona

Deviance residuals: Motivation

@ A technique for creating symmetric, normalized residuals that
is widely used in generalized linear modeling is to construct a
“deviance residual”

@ The idea behind the deviance residual is to examine the
difference between the log-likelihood for subject ¢ under a
given model and the maximum possible log-likelihood for that
subject:

206; — 4;),
in a sense, constructing a miniature likelihood ratio test for

individual 7

Patrick Breheny Survival Data Analysis (BIOS 7210) 18/42



Assessing the functiona

Deviance residuals: Definition

@ As it is essentially a likelihood ratio test, the quantity on the
previous slide should approximately follow a X% distribution

@ To turn it into a quantity that approximately follows a normal
distribution, we can use

CZ,L' = s1gn(mz) 2(21 — 62),
this is known as the deviance residual

@ | am leaving the details of deriving /; and working out a
simple expression for the deviance residual as homework

@ In R: residuals(fit, type=‘deviance’)
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Deviance residuals for the PBC data

The deviance residuals are much more symmetric:
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As influence Deviance residuals

Outliers

@ Deviance residuals have several uses that we will now illustrate

@ One is identifying outliers

@ For the PBC data, there are no extreme outliers; the largest
residuals are only 2.5 SDs away from zero

@ Note that the skewness of the martingale residual makes one
subject look like an extreme outlier; according to the deviance
residuals, however, that subject is only the 5th largest outlier
by absolute value
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Assessing the functional

Outliers (cont'd)

Residuals
e

The five largest negative residuals:

Deviance residuals

time status trt stage hepato bili d
6.95 1 1 4 1 1440 -2.44
12.19 0 2 4 1 210 -2.18
12.38 0 2 4 1 180 -2.14
11.09 0 1 4 1 130 -2.09
11.49 0 2 4 1 120 -2.05
And the five largest positive residuals:
time status trt stage hepato bili d
0.38 1 1 3 0 240 2.64
0.54 1 1 3 0 110 254
0.30 1 2 4 1 250 251
0.14 1 2 4 0 12.60 2.49
0.11 1 1 4 0 1790 2.43
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influence Deviance residuals

Residuals vs. covariates

@ The other main use of residuals is to plot them against
covariates to assess the relationship between a covariate and
unexplained variation

@ This can be done using covariates that are already in the
model as well as new covariates that one is considering adding
to the model; we will consider examples of both
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Residuals
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Residuals vs. albumin

Albumin is a protein synthesized by the liver and often used as a
marker of liver disease:
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Assessing functional forms

@ As the previous figure shows, deviance residuals are helpful
not only for checking whether new variables should be added
to a model, but also for assessing whether the relationship
between the predictor and the (log) hazard is linear

@ In the case of albumin, the exploratory plot, as well as
biological insight (the normal range of serum albumin is
3.4-5.4 g/dL) suggest a piecewise linear model with a change
point (sometimes called a “knot”) at 3.4
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Residuals Albumin
Assessing the functional ovariate Bili
ing influence S

Implementation details

@ This can be implemented in various ways; here is one:

f <- function(x) {pmin(x, 3.5)}
fit <- coxph(S ~ ... + f(albumin), PBC)

@ For nonlinear functional forms, it is typically helpful to plot
the modeled relationship between a covariate and the outcome

@ Again, this can be done in various ways, but the visreg
package is useful here:

visreg(fit, 'albumin')
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Residuals

Assessing the functional form of a covariate

As influence

Albumin

Changepoint model for albumin: lllustration

The dots here are the partial deviance residuals, 7; + cZi

Linear predictor
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Albumin
Assessing the functional fo
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Albumin summary

@ The AIC values for four possible models:

e No albumin: 1352.3
o Linear: 1334.9
e Changepoint, no effect in normal range: 1332.2
e Changepoint, linear effect in normal: 1333.8

@ The changepoint model that assumes a flat line after 3.5 is
the reasonably clear choice based on AIC, as well as being a
very reasonable model from a biological perspective
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Deviance residual

Residuals
Assessing the functional form of a covariate

influence
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Assessing the functional form of a covariate Bilirubin
influence

log(Bilirubin)

The residual plots on the previous page suggest log(bili) as a
functional form:

Linear predictor
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Assessing the functional fo
A ng influence

More on logs

@ One advantage of the log scale as a functional form is that it
has a convenient interpretation in proportional hazards models

@ Consider comparing two individuals, one with double the
bilirubin concentration of the other, but all other covariates
equal; the hazard ratio comparing the two is:

HR = 2%

o For log(bili), B; = 0.895; thus, doubling the bilirubin
concentration increases the hazard by 86% (2°8%° = 1.86)
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Residuals Albumin
Assessing the functional form of a covariate Bilirubin
Assessing influence Stage

Splines

@ Splines are also an attractive option for incorporating
nonlinear functional forms

@ The basic idea of splines is similar to our albumin model from
earlier: fit a piecewise polynomial model, with restrictions that
make the resulting functional form smooth and continuous

@ The details of this are very interesting, but unfortunately we
don’t have time to get into them in this course

e Still, it is worth knowing that the survival package has a
nice utility built in for fitting Cox models with spline terms:

fit <- coxph(S ~ ... + pspline(bili), PBC)
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Spline illustration

Linear predictor
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Assessing the functional Bilirubin

Bilirubin: Summary

@ The AIC values for four possible models:

No bilirubin:
Linear:
Log(bilirubin)
Splines:

@ The log model seems to be the clear choice here
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influence Stage

Before moving on, let's quickly revisit the effect of stage:

Linear predictor

Stage
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Remarks

@ The effect of stage seems to be very linear among stages 2, 3,
and 4

@ Stage 1 patients, however, seem to be at substantially lower
risk

o Still, it is difficult to tell from the data alone whether this
phenomenon is real, since we have few stage 1 patients in the
study (just 16 out of 312 patients), which explains why AIC
and the likelihood ratio test prefer the simpler model
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Influence

@ One final issue on the topic of regression diagnostics is the
assessment of influence

@ An influential measurement is one that has a large effect on
the model fit; this can be measured in a variety of ways, both
absolute and relative

@ A variety of residuals (score residuals, Schoenfeld residuals,
delta-beta residuals) have been proposed as ways of
quantifying and assessing influence; we'll focus on delta-beta
residuals
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Assessing

Delta-beta plots

@ The idea behind delta-beta residuals is very simple: let BJ(Z)

denote the estimate of Bj obtained if we leave subject ¢ out of
the model

@ The delta-beta residual for coefficient j, subject ¢ is therefore
defined as

Ay=5 - 3Y

@ This might seem computer intensive, but there are various
computational tricks that allow one to fairly quickly refit
models leaving individual observations out

@ In R: resid(fit, type=‘dfbeta’) returns a matrix of
delta-beta residuals
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Assessing influence
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Remarks

@ Delta-beta plots are always interesting to look at and offer a
great deal of insight into the inner mechanics of complicated
models

@ Furthermore, they can indicate whether the estimation of a
coefficient is dominated by just a few individuals, which would
be clear cause for concern

@ What action to take in the presence of influential observations
is often a complicated decision; my advice, however, is to
strongly prefer modifying the model to fit the data as opposed
to manipulating the data to fit the model (i.e., by removing
outliers)
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