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Introduction

Today’s lecture will address the question: Overall, how well
can a given model predict survival?

To illustrate, we’ll look at three models for the cirrhosis data:

Model 1: trt + albumin

Model 2: trt + stage + hepato + f(albumin) +
log(bili)

Model 3: Model 2 + 30 variables of random noise

The idea here is to see how various metrics compare when
applied to a model with decent predictive ability (model 1), a
model with very good predictive ability (model 2), and a
model in which overfitting is present (model 3)
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Linear predictors

One simple approach to describing the amount of signal
present in a model is to describe the linear predictors

Hazard ratios are direct functions of the linear predictors, so
by inspecting the distribution of linear predictors, we get a
sense of the extent to which our model can identify individuals
as high risk and low risk, as opposed to saying that everyone
has about the same risk

For our three models:

Model 1: SD(η̂) = 0.70
Model 2: SD(η̂) = 1.31
Model 3: SD(η̂) = 1.75

Patrick Breheny Survival Data Analysis (BIOS 7210) 3/25



Describing signal strength
Quantifying predictive accuracy

Assessing overfitting

Histograms

Plotting the distribution makes the same point, but also illustrates
the distribution of values:
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Survival plots

A related idea is to plot the baseline hazard ± 1 and 2 SDs:
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R2

Concordance

Introduction: R2

It is typically desirable to be able to summarize these
illustrations into a single number that quantifies a model’s
accuracy

For example, in linear regression we have R2, the proportion
of variance in the outcome explained by the model

Many authors have proposed various ways of constructing a
measure like R2 for Cox regression; the motivations typically
proceed by analogy
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Derivation

One widely used R2 measure for Cox regression is based on
the likelihood ratio test statistic:

LR = 2(`1 − `0),
where `1 is the log-likelihood of the fitted model and `0 is the
log-likelihood for the null model
For linear regression, we have

R2 = 1− RSS1
RSS0

,

where RSS1 and RSS0 are the residual sums of squares for the
fitted and null models
For linear regression, we also have

LR = n log
RSS0
RSS1
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Likelihood ratio R2

This suggests

R2 = 1− exp(−LR/n)

as a way of calculating an R2 for Cox models; note that n
here is the number of observations, not the number of events

For our three models:

Model 1: R2 = 0.18
Model 2: R2 = 0.45
Model 3: R2 = 0.55

This has essentially the same interpretation as R2 in linear
regression, although one may certainly question how
appropriate the analogy is

R2 is reported by summary(fit) in the survival package
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Concordance: Introduction

An alternative idea is to quantify a model’s accuracy on the
basis of concordance

The idea here is to consider all possible pairs of observations
and sort them into concordant and discordant groups based
on their outcomes and the model’s predictions
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Concordant pairs

For example, suppose we observe a pair with
ti = 100, di = 1, ηi = 1 and tj = 150, dj = 1, ηj = 0

This is a concordant pair, in that the model predicts that
subject i will die first, and this coincides with what actually
happened

Note that we can still have concordant pairs in the presence of
censoring: ti = 100, di = 1, ηi = 1 and
tj = 150, dj = 0, ηj = 0 also form a concordant pair
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Discordant and indeterminate pairs

Conversely, ti = 100, di = 1, ηi = 0 and
tj = 150, dj = 1, ηj = 1 would be a discordant pair: we
predict that subject j is higher risk, but they in fact survive
longer than subject i

Not all pairs can be classified as concordant or discordant,
however; in the presence of censoring, pairs can also be
indeterminate

For example, suppose we observe ti = 100, di = 0, ηi = 1 and
tj = 150, dj = 1, ηj = 0

We predict that subject i dies first, but we have no way of
knowing whether that actually happened
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Scoring

Finally, we can also have tied pairs, either because the
predictors are tied (ηi = ηj) or because the failure times are
tied (ti = tj , with di = dj = 1)

In aggregating the results, the model scores one point for
every concordant pair and half a point for every tied pair

This score is then divided by the total number of
non-indeterminate pairs to obtain a concordance index

As a formula,

C =
nc + 0.5nt
nc + nd + nt

,

where nc is the number of concordant pairs, nd is the number
of discordant pairs, and nt is the number of tied pairs
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Example: Model 2

For example, in the pbc data, there are 312 observations, so(
312
2

)
= 48, 516 pairs

For model 2, those pairs fall into the following categories:

23,653 were concordant
5,061 were discordant
17 were tied
19,785 were indeterminate

This gives C = 0.82

In the pbc data, 14% of the observations are censored,
resulting in 41% of the pairs being indeterminate; to contrast,
in the VA lung data, only 7% of the observations are
censored, and only 5% of the pairs are indeterminate
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Concordance results

By construction, C must be between 0 and 1, with 1
representing perfect agreement between model and
observation and 0.5 representing random guesses

In survival data, C = 0.6− 0.8 is pretty common

For our three models,

Model 1: C = 0.69
Model 2: C = 0.82
Model 3: C = 0.85

C is reported by summary(fit) along with R2; you can also
obtain a more detailed report from survConcordance
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Overfitting

You have probably noticed that for all of these measures,
model 2 is more accurate than model 1 (this is likely genuine)
and model 3 is more accurate than model 2 (this is not
genuine, as model 3 is just model 2 plus junk)

This is because none of the methods we have discussed so far
address overfitting in any way

All of these measures describe how well the model agrees with
the already observed outcomes; this is not really what we
want to know

What we really want to know is how accurate the model is at
predicting future observations
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Optimism

Measures of accuracy are almost always better for already
observed outcomes than they are for future predictions,
because the observed outcomes were used to build the model
in the first place

To be more precise, let M denote a generic measure of
accuracy, y denote the observed outcomes (for survival, this
includes t and d), y∗ denote future outcomes, and f(X)
denote a model’s predictions

Because of this phenomenon of overfitting, the quantity

M{f(X),y} −M{f(X),y∗}

is almost always positive; this quantity is known as the
optimism of the model, and it tends to be more severe for
complex models than simple models
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Shrinkage

Unfortunately, methods for estimating optimism are
underdeveloped in survival analysis, at least with respect to
other regression models

However, one useful approach is the shrinkage heuristic
developed by van Houwelingen and le Cessie (1990)

Those authors developed the estimator for the shrinkage
coefficient, γ:

γ̂ = 1− df

LR
,

where df denotes the degrees of freedom of the model
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Calibration

The idea is that the model’s predictions, {η̂i}, should be
shrunken towards zero by γ:

η̃i = γ̂ηi

This is referred to as calibration; the idea is that the model’s
predictions need to be re-calibrated in order to account for the
inevitable optimism that any model possesses

Remark: This is not the only way to estimate γ; for example, a
few authors have proposed estimators based on bootstrapping
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Simulation

To illustrate how this works, let’s simulate some survival data
from an exponential model (for simplicity, all observations are
uncensored)

In the generating model, there are 2 predictors for which a 1
SD change yields a hazard ratio of 2, and 28 predictors that
have no effect on hazard

Since this is simulated data, we can check the agreement
between {η̂i} and the true {ηi} values for both the original
and shrunken (calibrated) versions (in this example, γ̂ = 0.87)

Patrick Breheny Survival Data Analysis (BIOS 7210) 19/25



Describing signal strength
Quantifying predictive accuracy

Assessing overfitting

Original estimates
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Calibrated estimates
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Calibration results

For our models:

Model 1: γ̂ = 0.97
Model 2: γ̂ = 0.97
Model 3: γ̂ = 0.86

This makes sense: models 1 and 2 are fairly parsimonious, and
we shouldn’t have to shrink their estimates much, while model
3 deserves some shrinkage

The calibrated versions of SD(η):

Model 1: SD(η̃) = 0.68
Model 2: SD(η̃) = 1.28
Model 3: SD(η̃) = 1.50
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Calibrated R2?

It would seem like a reasonable idea to use γ̂ to obtain
calibrated versions of R2 and C as well (e.g., R̃2 = γ̂R2):

Model 1: R̃2 = 0.17
Model 2: R̃2 = 0.44
Model 3: R̃2 = 0.47

Model 1: C̃ = 0.69
Model 2: C̃ = 0.81
Model 3: C̃ = 0.80

I don’t think I’ve ever actually seen anyone report this in an
article, but it seems like a reasonable idea, at least to me. . .
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Final remarks

As I said, methods for addressing optimism and overfitting in
Cox models are relatively underdeveloped, so many questions
are unresolved

In part, this is due to inherent challenges in evaluating the
absolute accuracy of predictions for a model that only
estimates relative risks

For example, cross-validation is a widely used technique for
evaluating the predictive accuracy of models while properly
accounting for overfitting/optimism

But how exactly should we carry out cross-validation for a Cox
model?
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Final remarks (cont’d)

For example, we can fit the data to {X, t,d}−i and calculate

the linear predictor η̂i = xT
i β̂, but that linear predictor

quantifies risk relative to the observations in
{X, t,d}−i. . . upon observing ti and di, how do we evaluate
whether this was a good prediction or not?

We can’t use the Cox partial likelihood: with only one
observation in the risk set, the likelihood would be 1
regardless of η̂i

This is not to say that there are no solutions proposed in the
literature, rather just to re-emphasize that it’s a challenging
issue and worth further research
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