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Introduction

Throughout this class, we’ve looked at data and methods for
studies involving the time until a single event

Even when multiple events were present (e.g., death and liver
failure in the cirrhosis data), we combined them into a single
event (progression-free survival)

In this lecture, we’ll consider the problem of how to analyze
multiple, distinct failure types, treating them as separate
outcomes rather than combining them
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Endometrial cancer data

As a motivating example, we’ll consider data from a study of
endometrial adenocarcinoma, the most common gynecologic
cancer in the United States

The study focused on women with medically inoperable
patients – i.e., patients with serious comorbidities such as
diabetes and cardiovascular disease that make surgery too
risky as a treatment option

These women were treated with radiation therapy only, with
data coming from a consortium of five academic cancer
centers
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Endometrial cancer data (cont’d)

Follow-up data on 74 women was available from the time of
diagnosis until the time of either death or the end of the study

The cause of death was also recorded, as either having been
caused by the endometrial adenocarcinoma itself, or having
been due to other causes

In addition to the time until death, we also have data on the
time until recurrence of the cancer following radiation therapy

The three outcomes in this study provide a good illustration
of the various kinds of relationships that can occur when
considering multiple failure types
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Recurrence vs. time to death from other causes

For example, consider the relationship between recurrence and
time to death from other causes

It is possible that recurrence of the cancer increases the risk of
death from other causes, but it is also possible that it has no
effect on the risk of say, dying due to cardiac problems

This question could be reasonably handled through the use of
time-dependent covariates, as discussed in the previous lecture
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Recurrence vs. disease-specific death

On the other hand, the relationship between recurrence and
disease-specific death would not make much sense to model
using time-dependent covariates, at least using a proportional
hazards model, since it would be impossible to die of cancer
without the cancer first recurring

Instead, something like a multi-state model might be of
interest:

Remission
λ1−→ Recurrence

λ2−→ Death

where λ1 and λ2 represent conditional hazards, also known in
this context as transition rates
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Disease-specific death vs. death from other causes

The relationship between disease-specific death and death
from other causes is different yet again, since these two
outcomes are mutually exclusive

In a sense, one could treat death from other causes as a
censoring event, but this isn’t exactly right, as it implies that
once an individual dies from other causes, we still don’t know
when they might die of cancer

This situation, in which only one event out of a group of
potential events can occur in any given subject, is known as
the problem of competing risks
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Mathematical formulation
Estimation
Results

Type-specific hazard

Let us begin by extending our mathematical definitions of
hazard and related quantities to accommodate multiple failure
types

Let T denote the time until failure, and J indicate the type of
failure

The type-specific hazard is then defined as

λj(t) = lim
h→0

P{t ≤ T < t+ h, J = j|T ≥ t}
h
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Overall hazard and survival

In the case where only one of the failure types is possible (i.e.,
the case of competing risks), the overall hazard is

λ(t) =
∑
j

λj(t)

Likewise, the overall survival is

S(t) = exp

{
−
∫ t

0
λ(s)ds

}
Note that it makes sense to discuss type-specific hazards, but
not type-specific survival – if a subject survives, they survive
all of the risks involved
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Subdistributions

Thus, while we have largely focused on estimating and
examining survival functions throughout the course, we will
have to use something else in the case of competing risks

One possibility would be the cumulative hazard, but that
tends to be unpopular among non-statisticians due to the
difficulty of interpreting it

A much more widely used alternative is to extend the density
and distribution functions to accommodate type-specific
failures

Because the time to a type-specific event no longer has a
proper distribution, these extensions are known as the
“subdensity” and “subdistribution” functions
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The cumulative incidence function

The subdensity function is defined as

fj(t) = λj(t)S(t)

Similarly, the subdistribution function is defined as

Fj(t) =

∫ t

0
fj(s)ds

The subdistribution function is also known as the cumulative
incidence function, which is the common name for this
quantity in applied work
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Nonparametric likelihood

Nonparametric estimation of cumulative incidence functions is
very similar to the nonparametric maximum likelihood
estimation of survival functions in the Kaplan-Meier case

Letting t1 < t2 < · · · denote the unique failure times, dji
denote the number of failures of type j at time ti, and ni
denote the number at risk at time ti, the nonparametric MLE
for Fj can be found by maximizing the likelihood

L({λj}) =
∏
i

∏
j

λ
dji
ji (1− λi)

ni−di ,

where λji = λj(ti), λi =
∑

j λji, and di =
∑

j dji
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Estimate of cumulative incidence

Maximizing the likelihood on the previous slide yields

λ̂ji =
dji
ni

These estimates, in turn, yield an estimate of the cumulative
incidence function via

F̂j(t) =
∑
ti≤t

λ̂ji

i−1∏
k=1

{1− λ̂k};

note that the term involving the product is simply the
Kaplan-Meier estimate Ŝ(t−i )
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R code

The survfit function can also be used to fit incidence
functions

To use it, instead of passing 0/1 as the status indicator to
Surv, one supplies a factor, with the first level taken to be the
censoring indicator

Otherwise, the code is the same:

fit <- survfit(Surv(tDeath, sDeath) ~ 1, Data)
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More on R

The usual R functions for working with survfit objects also
work with competing risks, such as summary for obtaining
estimates at specific time points and plot for plotting the
curves

It is worth noting that the survival package refers to the
cumulative incidence as the prevalence

In particular, fit$prev contains the cumulative incidence
function estimates, with fit$lower and fit$upper

containing the confidence interval endpoints; all three
quantities are matrices now, with one column for each
competing risk
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Results
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Results w/ confidence band
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Conditional recurrence

Cumulative incidence functions are not always the only
quantities of interest when multiple time-to-event endpoints
are present

For example, one quantity of interest in the endometrial
cancer study is the percent of surviving patients who have
experienced recurrence by a given time

This quantity was originally studied by Pepe (1991),
“Inference for Events with Dependent Risks in Multiple
Endpoint Studies”, who referred to it as the conditional
prevalence
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Estimate

Interestingly, the conditional prevalence can be consistently
estimated by a combination of simple Kaplan-Meier estimates

Letting ŜOS denote the estimated survival function with
respect to overall survival (i.e., all-cause mortality) and ŜPFS
denote the estimated progression-free survival, the estimated
conditional recurrence is given by

Q(t) = 1
ŜPFS(t)

ŜOS(t)

It is worth mentioning that unlike survival functions and
cumulative incidence functions, the conditional prevalence is
not necessarily monotone
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Conditional recurrence in endometrial cancer study
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Confidence intervals

Pepe (1991) provides some asymptotic derivations for the
standard error of the conditional prevalence

Another possibility is to use the bootstrap

Here, we simply resample from the original group of subjects,
calculate ŜOS(t), ŜPFS(t), and Q(t) based on the resampled
subjects

This is then repeated a large number of times (e.g., 1,000)
and the 2.5th and 97.5th quantiles of the bootstrapped
estimates form a confidence interval for Q(t)

This is known as the bootstrap percentile method; there are
other ways of forming bootstrap confidence intervals as well
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Results w/ confidence intervals
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Remarks

The cumulative incidence functions and the conditional
recurrence plots both indicate that radiation therapy provides
adequate management of cancer risk in these patients, with
recurrence only occurring in approximately 16% of patients

Furthermore, radiation therapy is likely preferable to more
aggressive interventions, as the risk of death from other
causes is the greater medical concern here, roughly 3 times
higher than the risk of death due to cancer recurrence
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Regression models

A natural next question, which we will only briefly touch
upon, is how to incorporate covariates into the explanation
and prediction of competing risks

Cause-specific hazards, λj(t), can be estimated with separate,
ordinary Cox regression following appropriate setup of the
time and failure indicator variables

However, these models don’t really address the competing
risks question: coefficients will tell you whether a factor
increases the risk of that failure type, but not whether it
affects the balance of risks across types
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Regression models

An alternative approach, proposed by Fine and Gray (1999),
“A Proportional Hazards Model for the Subdistribution of a
Competing Risk”, focuses on directly modeling the cumulative
incidence, while retaining the semiparametric nature of Cox
regression

This approach is not available in the survival package, but
is implemented in the package cmprsk through the function
crr, for competing risks regression
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