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Introduction

• In our last lecture, we introduced the Cox partial likelihood;
today, we will go over how to solve for β̂, the maximum
(partial) likelihood estimator

• As in previous models, this will require working out the score
vector and Hessian matrix and applying an iterative
Newton-Raphson procedure

• On a superficial level this procedure is similar to our other
regression models, but the details are quite different: although
the observations are independent, we can no longer treat the
partial likelihood contributions from each observation in
isolation
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Partial likelihood; at-risk indicator

• Recall the Cox partial likelihood (PL):

L(β) =
∏
j

exp(xT
j β)∑

k∈R(tj)
exp(xT

k β)
,

where j indexes the observed failure times and R(t) is the set
of observations at risk at time t

• The denominator in the expression above is also sometimes
written as

n∑
k=1

Yk(tj) exp(x
T
k β),

where Yi(t) is an at-risk indicator, equal to 1 if subject i is at
risk at time t, and 0 otherwise
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Cox PL in terms of individual weights

• As an alternative, it is often convenient to express the
likelihood as a product of terms for each individual, as
opposed to each failure time

• To simplify the expression, let wj = exp(xT
j β); the cox partial

likelihood can now be written as

L(β) =
∏
i

{
wi∑
Ri
wj

}di

• Expressing the partial likelihood in this way emphasizes the
fact that the model assigns weights wi to the relative
likelihood that individual i will fail compared to the other
subjects at risk
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Comments

• Note that the di exponent ensures that only the observations
at which a failure is observed contribute to the likelihood

• However, because each subject affects the total hazard
∑
wj

over all the failure times at which they are in the risk set, the
contribution that subject i makes to the likelihood is not
limited to the ith term in the product

• Because this sum will appear many times in our derivations
today, I will denote it Wi:

Wi =
∑
R(ti)

wj ,

where Wi represents the total hazard for all subjects at risk
for the time at which subject i fails
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Failure probabilities

• The relative probability of failure for subject i is given by wi;
let us denote the absolute probability of failure for subject i at
time tj as πij :

πij = Yi(tj)
wi

Wj

• Note, of course, that this probability is absolute only in the
conditional sense, given that a failure occurs at time tj
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Log-likelihood

• The (partial) log-likelihood is therefore

` =
∑
i

di logwi −
∑
i

di logWi

=
∑
i

diηi −
∑
i

di logWi

• As we begin to take derivatives, keep in mind that the Wi

term contains many η terms in addition to ηi
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Score
Hessian

Score

• Solving for β̂ involves deriving the score equations and setting
them equal to zero

• Let us begin by evaluating the partial derivative of the
likelihood with respect to the kth linear predictor:

∂`

∂ηk
= dk −

∑
i

πkidi

• Thus, we can write the derivative of the log-likelihood with
respect to the vector of linear predictors as

∇η` = d−Pd,

where P is an n× n matrix with elements πij
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Score
Hessian

Score (continued)

• As we have seen before, by the chain rule the score with
respect to β is therefore

u(β) = XT (d−Pd)

• Alternatively, we can express the score equations as∑
j

(xj − Ejx) = 0,

where Ejx =
∑

i xiπij can be thought of as the expected
value of the covariate vector at the jth failure time given the
probability distribution implied by the model
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Hessian

Hessian

• The score, of course, is nonlinear in β, meaning that we will
have to apply a Taylor series expansion in order to solve it

• This, in turn, involves finding second derivatives: i.e., the
Hessian matrix

• Let us start with the diagonal elements (with respect to the
linear predictors):

∂2`

∂η2k
= −

∑
i

diπki(1− πki)

• Similarly,

∂2`

∂ηk∂ηj
=

∑
i

diπkiπji
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Score
Hessian

Hessian (continued)

• Again, applying the chain rule we obtain the Hessian with
respect to β:

H(β) = −XTWX,

where W denotes the (non-diagonal) matrix whose terms are
given on the previous slide, with signs reversed (note that W
is unrelated to Wi; my apologies if the notation is confusing)

• Alternatively, one can express the Hessian as

−H(β) =
∑
j

∑
k

πkj(xk − Ejx)(xk − Ejx)
T ,

where j here indexes the observed failure times
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Newton-Raphson algorithm

• As we have seen previously with the exponential and Weibull
regression models, the Newton-Raphson algorithm is an
effective, efficient iterative procedure that converges to the
MLE (usually)

• For Cox regression, the Newton-Raphson update is given by

β̂(m+1) = (XTWX)−1XT (d−Pd) + β̂(m),

where W and P are evaluated at β̂(m), the current value of
the regression coefficients
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Crude R code

for (i in 1:20) {

eta <- X %*% b

haz <- as.numeric(exp(eta)) # w[i]

rsk <- rev(cumsum(rev(haz))) # W[i]

P <- outer(haz, rsk, '/')

P[upper.tri(P)] <- 0

W <- -P %*% diag(d) %*% t(P)

diag(W) <- diag(P %*% diag(d) %*% t(1-P))

b <- solve(t(X)%*%W%*% X) %*% t(X) %*% (d - P%*%d) + b

}

The above code assumes that the data has been sorted by time on
study, and assumes no ties are present
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Comments

• The code on the previous slide is crude for several reasons:
◦ It could be faster/more efficient
◦ It doesn’t check for convergence
◦ It can occasionally fail to converge, because it doesn’t

implement step-halving when needed

• You are tasked with addressing the last two shortcomings on
your next homework assignment
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Examples: pbc data

Some examples for how well Newton-Raphson works on the pbc

data:

• Model contains trt, stage, and hepato: Converges in 4
iterations

• Model contains trt, stage, hepato, and bili: Fails to
converge

• Model contains trt, stage, hepato, and bili, but we
employ step-halving: Converges in ∼ 20 iterations
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Conditional step-halving

• The survival package, however, can fit the Cox model with
trt, stage, hepato, and bili in just 6 iterations . . . how
does it do that?

• The fundamental tradeoff here is between stability and speed:
step-halving slows down convergence (intentionally!), but
provides stability

• It would be desirable to use Newton-Raphson as a default, but
have some sort of check in place that uses step-halving when
problems arise
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Likelihood checking

• It turns out that this is fairly straightforward to accomplish

• Let β̃ denote the Newton-Raphson update, and consider the
following procedure:

(1) Calculate `(β̂(m))

(2) Calculate `(β̃)

(3) If `(β̃) > `(β̂(m)), then β̂(m+1) ← β̃; otherwise,

β̂(m+1) ← 1
2 β̃ + 1

2 β̂(m)

• Using this procedure, we can solve for β̂ in 6 iterations, using
step-halving only once, on the initial update
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Guaranteed convergence?

• The procedure on the previous page almost always works, but
is still not guaranteed to converge

• The reason is that step halving might not be enough: it is
possible that `(12 β̃ + 1

2 β̂(m)) is still smaller than `(β̂(m))

• To guarantee convergence, we need to iteratively reapply the
step-halving: consider 1

4 ,
1
8 ,

1
16 , . . . until we reach a step size

small enough that the likelihood does, in fact, increase

• Typically, this is not necessary, but this kind of check is
necessary to ensure that the likelihood goes up with every
iteration, even in pathological cases
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Ties

• As a final comment, note that we are ignoring the issue of
tied observations, even though there are in fact a few ties in
the pbc data

• However, unless there are a large number of ties, this is
typically a very minor issue:

trt stage hepato bili

Crude -0.15530 0.62157 0.34860 0.13358
survival -0.15473 0.62138 0.34854 0.13353

• We will, however, discuss ties more carefully in a future lecture
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