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Introduction

• We will begin by discussing the topic of high-dimensional data
from a multiple testing perspective
• The basic issue is this: a p-value of 0.03 has a certain
interpretation when we test a single hypothesis – we would
tend to think of this as significant evidence
• But what if we’ve tested 100 or 1,000 hypotheses?
• We will explore three fundamentally different answers to that
question in the coming lectures: family-wise error rates, false
discovery rates, and local false discovery rates
• Note: The “Large scale testing” portion of the course will not
use our textbook; material is based in part on Large-Scale
Inference, by Bradley Efron
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Leukemia data

• To illustrate these ideas, we will use data from one of the
earliest and most well-known high-dimensional studies: a gene
expression study of leukemia patients
• The study used a technology called a microarray to measure
the expression of 7, 129 genes for 72 patients
• Of the 72 patients,

◦ 47 patients had acute lymphoblastic leukemia (ALL)
◦ 25 patients had acute myeloid leukemia (AML)

Of the two diseases, AML has a considerably worse prognosis:
only 26% survive at least 5 years following diagnosis,
compared to 68% for ALL
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Analysis goals

• The analysis could be approached from one of two
perspectives:
◦ Testing whether the expression of each gene differs between

the two types of cancer, in the hopes of identifying genes that
may be affected differently by the two diseases

◦ Using the gene expression data to explain/predict the type of
cancer

• For this unit, we are focusing on the first goal; for most of the
rest of the course, we will focus on the second
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Data format

I will make the data sets for this course available online in the
following format:
• All data sets will be saved R objects in the .rds format; use

readRDS() to read them into R
• Each data set will contain (at least) two objects:

◦ y, a vector (here, the disease status); in regression problems,
this would be the response, or outcome

◦ X, a matrix (here, the gene expression data) with the same
number of rows as y has elements, and many columns
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p-values

• For the leukemia data, let’s carry out 7,129 two-sample
t-tests, obtaining the set of p-values {pj}7,129

j=1
• A critical property of p-values is that for any value u,

P0{P ≤ u} ≤ u,

where P is the p-value and P0 denotes the probability under
the null hypothesis; note that P is a random variable here in
the sense that it depends on the data
• For a continuous null distribution, we have

P ∼ Unif(0, 1)

under the null hypothesis

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 6 / 24



Introduction
Family-wise error rates

Other FWER-controlling procedures

Leukemia data
Notation

z-values

• Sometimes, it is more useful to work with z-values than
p-values:

zj = Φ−1(pj) (one-sided),
zj = −sjΦ−1(pj/2) (two-sided)

where Φ−1 is the inverse of the standard normal CDF and sj

is the sign of the jth test
• Under H0, Z ∼ N(0, 1)
• One advantage of z-values for two-tailed tests is that they
retain the sign information; in the present context, the z-value
tells us whether expression was higher in ALL or AML
patients, while the p-value does not
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• The family-wise error rate (FWER) is defined as the
probability of making at least one false rejection in a family of
hypothesis-testing problems
• A FWER control procedure is a method for taking a set of
p-values and deciding which null hypotheses to reject, subject
to the requirement that FWER ≤ α
• FWER control was the first rigorous approach to assessing
significance in the presence of multiple comparisons
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• The simplest and most well-known FWER control procedure is
the Bonferroni correction, in which we reject all hypotheses
for which

pj ≤ α/h,

where h is the number of hypotheses being tested
• Theorem: The Bonferroni correction controls the FWER at
level α
• Note that the above theorem makes no assumptions
concerning independence between tests; it is valid for any
dependence among the h tests
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• Another way of thinking about FWER control procedures is in
terms of adjusted p-values
• The adjusted p-value for hypothesis j is defined as

p̃j = inf{α : H0j rejected at FWER ≤ α}

• For the Bonferroni correction,

p̃j = hpj ;

by convention, with an upper bound of 1
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FWER for leukemia study
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• 7,129 hypothesis tests
• 2,071 have pj ≤ .05
• 260 have p̃j ≤ .05

using the Bonferroni
approach
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Bonferroni: Too conservative?

• One concern with the Bonferroni approach is that the upper
bound it provides may be loose; could it be improved upon?
• For example, if we knew the number of true null hypotheses,
we could divide by that number instead of h
• In a sense, this is the motivation behind a clever modification
of the Bonferroni approach proposed by Sture Holm
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Holm procedure

Letting p(1), p(2), . . . , p(h) denote the p-values, sorted from smallest
to largest, the Holm procedure is as follows:
(1) Compare p(1) to α/h; if p(1) > α/h, do not reject any

hypotheses; if p(1) ≤ α/h, reject the corresponding hypothesis
and move on to p(2)

(2) Compare p(2) to α/(h− 1); if p(2) > α/(h− 1), do not reject
any additional hypotheses; if p(2) ≤ α/(h− 1), reject the
corresponding hypothesis and move on to p(3)

(3) Continue in this manner until no more hypotheses can be
rejected
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Properties and remarks

• Theorem: The Holm procedure controls the FWER at level α
• As with the Bonferroni approach, note that we have made no
assumptions regarding dependence between tests
• Note that the Holm procedure is always more powerful than
the Bonferroni procedure, since

α

h− j + 1 ≥
α

h
for all j

• The Holm procedure is known as a step down procedure; there
are a variety of other stepwise approaches to FWER control
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R code

• The Bonferroni and Holm procedures are both implemented
(along with many others) in the R function p.adjust:
p.adjust(p, method='bonferroni')
p.adjust(p, method='holm') # Default

• The above code returns the adjusted p-values; by comparing p̃
to α, we determine which hypotheses may be rejected at
FWER α
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Leukemia results

• For the Leukemia data, at FWER 0.05:
◦ 260 genes are declared significant using the Bonferroni

approach
◦ 262 genes are declared significant using the Holm approach

• These results are typical: the Holm approach is more powerful
than the Bonferroni approach, but the difference is not as
dramatic as you might imagine
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Motivation

• The appeal of the Holm and Bonferroni approach is that they
work for any dependency structure among the hypotheses
• The disadvantage, however, is that for many types of
dependence, we can achieve better bounds on the FWER if we
use this information
• So, let’s cover one more FWER control procedure, proposed
by Westfall and Young, who use a permutation-based
approach to preserve the dependency among the features
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Permutation tests

• To briefly review the general idea of permutation tests,
suppose we observe values {xi}n1

i=1 in group 1 and {xi}n1+n2
i=n1+1

in group 2
• Under the null hypothesis, these values all come from the
same distribution and any partition of the x values into sets of
size n1 and n2 should be equally likely
• We can therefore carry out a test by randomly permuting the
x values, calculating the test statistic T (x), and calculating
the fraction of random permutations that are less than the
observed value of T (x)
• Ideally, we would do this for all possible permutations, but
unless the sample size is small, this is not feasible from a
computational perspective
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Westfall-Young procedure

• This is the basic idea of the Westfall-Young procedure:
permute the class labels y, then reapply the test in question
• Doing this a large number of times allows us to estimate

π(j) = P0
{

min
k∈Rj

Pk ≤ p(j)
}
,

where Rj = {k : pk ≥ p(j)}
• The adjusted p-value is then

p̃(i) = max
j≤i

π̂(j),

where π̂ is the empirical mean over all the permutations
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Remarks

• The main idea is that by permuting y, we force independence
between y and xj for all j; i.e., we force the complete null
hypothesis to be true
• However, by keeping the rows of X intact, we preserve the

correlation structure between the features (here, genes)
• It is reasonably clear, then, that the Westfall-Young procedure
controls FWER in the weak sense: if all the null hypotheses
are true
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Strong vs. weak control

• Strong control of the FWER means that the FWER is
bounded by α regardless of which null hypotheses are true and
which are false
• Strong control is obviously more desirable, but harder to
demonstrate, at least without added assumptions
• In the case of the Westfall-Young procedure, to prove strong
FWER control, we require an assumption of subset pivotality:
that the vector (Pi : H0i true) always follows the same
distribution
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Leukemia data: Comparison
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The Westfall-Young
procedure allows us to
identify 291 differentially
expressed genes at a
FWER of 5% (compared
to 260 for Bonferroni)
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