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Introduction

• Last time we derived results from a classical perspective in
which β∗ was fixed as n→∞
• Today, we will consider things from a non-asymptotic
perspective, obtaining bounds on estimation and prediction
error while allowing p > n

• Although results along these lines can be shown for other
penalized regression estimators as well, today’s lecture will
focus entirely on the lasso
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A preliminary lemma

• We’ll begin by discussing prediction, as we can prove results
here without requiring any additional conditions
• First, let us prove the following lemma, from which several of
our later results will derive
• Lemma: If λ ≥ 2

n‖X
>ε‖∞, then the lasso prediction error

satisfies
1
n
‖Xβ̂ −Xβ∗‖22 ≤ λ‖δ‖1 + 2λ‖β∗‖1 − 2λ‖δ + β∗‖1,

where δ = β̂ − β∗
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Prediction bound

• Based on this lemma, we have the following
• Theorem: If λ ≥ 2

n‖X
>ε‖∞, then the lasso prediction error

satisfies
1
n
‖Xβ̂ −Xβ∗‖22 ≤ 4λ‖β∗‖1

• Corollary: If λ = 2σ
√
c log(p)/n and y = Xβ∗ + ε with

εi
⊥⊥∼ N(0, σ2), then the lasso prediction error satisfies

1
n
‖Xβ̂ −Xβ∗‖22 ≤ 8σ‖β∗‖1

√
c log p
n

with probability at least 1− 2 exp{−1
2(c− 2) log p}

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 4 / 20



Prediction
Estimation

Selection

Remarks

• The prediction error increases with noise and dimension, and
decreases with sample size – these dependencies are intuitive
• The dependence on ‖β∗‖ is less obvious; it is worth noting,
however, that up until this point, we have assumed nothing
about β∗ (or about X)
• This prediction result differs from our previous results:
previously, we had shown that prediction error was O(n−1),
whereas this result is O(n−1/2)
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Convexity conditions
Estimation bound
Prediction bound revisited

Eigenvalue conditions

• In the previous lecture, we introduced an eigenvalue condition:
namely, that X>X/n→ Σ, with the minimum eigenvalue of
Σ bounded above 0
• Why is this important?
• We’re finding the value β̂ that minimizes Q(β); but even if

we can guarantee that Q(β̂) ≈ Q(β∗), if the function is flat,
we have no guarantee that β̂ is close to β∗

• If p > n, however, it is clear that this condition can never be
met

Patrick Breheny University of Iowa High dimensional data analysis (BIOS 7240) 6 / 20



Prediction
Estimation

Selection

Convexity conditions
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Restricting our eigenvalue conditions

• In other words, our previous condition was:

1
nδ

>X>Xδ
‖δ‖22

> τ

for all δ 6= 0 and some τ > 0
• However, what if this condition didn’t have to be met for all
δ ∈ Rp, but only for some δ ∈ Rp?
• For example, what if we only had to satisfy the condition for
δ ∈ RS?
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Convexity conditions
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A cone condition

• This is a step in the right direction, but not nearly strong
enough: for example, suppose a variable in N was perfectly
correlated with a variable in S
• We will definitely need to involve N in our condition as well,

but how to do so without running into dimensionality
problems?
• The key here is to require the eigenvalue condition for only
those δ vectors that fall mostly, or at least partially, in the
direction of β∗

• Theorem: If λ ≥ 2
n‖X

>ε‖∞, then

‖δN ‖1 ≤ 3‖δS‖1
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Examples

• For example, suppose X>X/n looks like this:1 0 0
0 1 1
0 1 1


• We are in trouble if S contains either feature 2 or feature 3
• However, if S = {1} then there are no flat directions that lie

within the lasso cones
• Second example: Suppose S = {1} and x1 = x2 + x3 + x4;

then L(β) would be perfectly flat in the direction
δ = (1,−1,−1,−1), with ‖δN ‖1 ≤ 3‖δS‖1 satisfied – this
kind of X must be ruled out also
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Illustration
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Restricted eigenvalue condition

• Let us now formally state the restricted eigenvalue condition,
which I will denote RE(τ): There exists a constant τ > 0 such
that

1
nδ

>X>Xδ
‖δ‖22

≥ τ

for all nonzero δ : ‖δN ‖1 ≤ 3‖δS‖1
• Note: This condition is specific to linear regression; the
general condition is known as restricted strong convexity and
would consist of replacing X>X/n with ∇2L(β)
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Other conditions

This is certainly not the only condition that people have used to
prove things in the high-dimensional setting; other similar
conditions include
• Irrepresentable condition
• Restricted isometry property (RIP)
• Compatibility condition
• Coherence condition
• Sparse Riesz condition

All of these conditions require that XS is full rank as well as
placing some sort of restriction on how strongly features in S can
be correlated with features in N
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Estimation consistency

• With this condition in place, we’re ready to prove the
following theorem
• Theorem: Suppose X satisfies RE(τ) and λ ≥ 2

n‖X
>ε‖∞;

then

‖β̂ − β∗‖2 ≤
3
τ
λ
√
|S|

• Corollary: Suppose X satisfies RE(τ), y = Xβ∗ + ε with
εi

⊥⊥∼ N(0, σ2), and λ = 2σ
√
c log(p)/n; then

‖β̂ − β∗‖2 ≤
6σ
τ

√
c |S| log p

n

with probability 1− 2 exp{−1
2(c− 2) log p}
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Remarks

• This rate makes a lot of sense:
◦ The error of the oracle estimator is on the order σ

√
|S| /n: no

method can estimate S parameters based on n observations at
a better rate than this

◦ The log p term is the price we pay to search over p features in
order to discover the sparse set S

• Note also the dependence on the eigenvalue parameter τ ; in
particular, if the minimum eigenvalue is close to 0, the
estimate rate will suffer significantly
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Another look at prediction error

• Now that we’ve made some assumptions about X and β∗,
does this affect our prediction accuracy?
• Theorem: Suppose X satisfies RE(τ) and λ ≥ 2

n‖X
>ε‖∞;

then
1
n
‖Xβ̂ −Xβ∗‖22 ≤

9
τ
λ2 |S|

• Corollary: Suppose X satisfies RE(τ), y = Xβ∗ + ε with
εi

⊥⊥∼ N(0, σ2), and λ = 2σ
√
c log(p)/n; then

1
n
‖Xβ̂ −Xβ∗‖22 ≤ 36cσ

2

τ

|S| log p
n

with probability 1− 2 exp{−1
2(c− 2) log p}
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Remarks

• We have now derived two results concerning the prediction
error of the lasso:
◦ No assumptions on X or β∗: MSPE = O(n−1/2), the “slow

rate”
◦ β∗ sparse, X satisfies RE(τ): MSPE = O(n−1), the “fast

rate”
• Further theoretical work has shown that these bounds are in
fact tight: no method can achieve the fast rate without
additional assumptions
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Irrepresentable condition

• Finally, we’ll take a look at the selection consistency of the
lasso in high dimensions, although we’re not going to have
time to prove our result in class
• We begin by noting that our restricted eigenvalue condition is
not enough to establish selection consistency; we need
something stronger
• The feature matrix X satisfies the irrepresentable condition,

which I will denote IR(τ), if there exists τ > 0 such that

‖(X>
SXS)−1X>

SXN ‖∞ ≤ 1− τ,

where ‖A‖∞ = maxj‖aj‖1
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Remarks

• Note that for all j ∈ N , the irrepresentable condition places a
bound on (X>

SXS)−1X>
Sxj , the coefficient for regressing xj

on the features in S
• In words, this is saying no noise feature can be highly
“represented” by the true signal features; if this were the case,
we might select the noise feature instead of the true signal
• For example, if XS and XN were orthogonal, then τ = 1
• Note that the IR(τ) condition requires ΣS = 1

nX>
SXS to be

invertible; let ξ∗ denote its minimum eigenvalue
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Selection consistency theorem (Wainwright, 2009)

Theorem: Suppose that X satisfies IR(τ) and y = Xβ∗ + ε with
εi

⊥⊥∼ N(0, σ2); let

λ = 8σ
τ

√
log p
n

B = λ

( 4σ√
ξ∗

+ ‖Σ−1
S ‖∞

)
Then with probability at least 1− c1 exp{−c2nλ

2}, the lasso
solution β̂ has the following properties:
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Selection consistency theorem (Wainwright, 2009) (cont’d)

• Uniqueness: β̂ is unique
• Estimation error bound: ‖β̂ − β∗‖∞ ≤ B
• No false inclusions: Ŝ ⊆ S
• No false exclusions: Ŝ includes all indices j such that
|β∗j | > B and is therefore selection consistent provided that all
elements of β∗S are at least that large
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