

Theoretical results: Non-asymptotic

Patrick Breheny

March 24

Introduction

- Last time we derived results from a classical perspective in which β^* was fixed as $n \rightarrow \infty$
- Today, we will consider things from a non-asymptotic perspective, obtaining bounds on estimation and prediction error while allowing $p > n$
- Although results along these lines can be shown for other penalized regression estimators as well, today's lecture will focus entirely on the lasso

A preliminary lemma

- We'll begin by discussing prediction, as we can prove results here without requiring any additional conditions
- First, let us prove the following lemma, from which several of our later results will derive
- **Lemma:** If $\lambda \geq \frac{2}{n} \|\mathbf{X}^\top \boldsymbol{\epsilon}\|_\infty$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X} \hat{\boldsymbol{\beta}} - \mathbf{X} \boldsymbol{\beta}^*\|_2^2 \leq \lambda \|\boldsymbol{\delta}\|_1 + 2\lambda \|\boldsymbol{\beta}^*\|_1 - 2\lambda \|\boldsymbol{\delta} + \boldsymbol{\beta}^*\|_1,$$

where $\boldsymbol{\delta} = \hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*$

Prediction bound

- Based on this lemma, we have the following
- **Theorem:** If $\lambda \geq \frac{2}{n} \|\mathbf{X}^\top \boldsymbol{\varepsilon}\|_\infty$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X} \hat{\boldsymbol{\beta}} - \mathbf{X} \boldsymbol{\beta}^*\|_2^2 \leq 4\lambda \|\boldsymbol{\beta}^*\|_1$$

- **Corollary:** If $\lambda = 2\sigma \sqrt{c \log(p)/n}$ and $\mathbf{y} = \mathbf{X} \boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\text{ iid }}{\sim} N(0, \sigma^2)$, then the lasso prediction error satisfies

$$\frac{1}{n} \|\mathbf{X} \hat{\boldsymbol{\beta}} - \mathbf{X} \boldsymbol{\beta}^*\|_2^2 \leq 8\sigma \|\boldsymbol{\beta}^*\|_1 \sqrt{\frac{c \log p}{n}}$$

with probability at least $1 - 2 \exp\{-\frac{1}{2}(c-2) \log p\}$

Remarks

- The prediction error increases with noise and dimension, and decreases with sample size – these dependencies are intuitive
- The dependence on $\|\beta^*\|$ is less obvious; it is worth noting, however, that up until this point, we have assumed nothing about β^* (or about \mathbf{X})
- This prediction result differs from our previous results: previously, we had shown that prediction error was $O(n^{-1})$, whereas this result is $O(n^{-1/2})$

Eigenvalue conditions

- In the previous lecture, we introduced an eigenvalue condition: namely, that $\mathbf{X}^\top \mathbf{X}/n \rightarrow \Sigma$, with the minimum eigenvalue of Σ bounded above 0
- Why is this important?
- We're finding the value $\hat{\beta}$ that minimizes $Q(\beta)$; but even if we can guarantee that $Q(\hat{\beta}) \approx Q(\beta^*)$, if the function is flat, we have no guarantee that $\hat{\beta}$ is close to β^*
- If $p > n$, however, it is clear that this condition can never be met

Restricting our eigenvalue conditions

- In other words, our previous condition was:

$$\frac{\frac{1}{n} \boldsymbol{\delta}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_2^2} > \tau$$

for all $\boldsymbol{\delta} \neq \mathbf{0}$ and some $\tau > 0$

- However, what if this condition didn't have to be met for *all* $\boldsymbol{\delta} \in \mathbb{R}^p$, but only for *some* $\boldsymbol{\delta} \in \mathbb{R}^p$?
- For example, what if we only had to satisfy the condition for $\boldsymbol{\delta} \in \mathbb{R}^{\mathcal{S}}$?

A cone condition

- This is a step in the right direction, but not nearly strong enough: for example, suppose a variable in \mathcal{N} was perfectly correlated with a variable in \mathcal{S}
- We will definitely need to involve \mathcal{N} in our condition as well, but how to do so without running into dimensionality problems?
- The key here is to require the eigenvalue condition for only those δ vectors that fall mostly, or at least partially, in the direction of β^*
- **Theorem:** If $\lambda \geq \frac{2}{n} \|\mathbf{X}^\top \boldsymbol{\varepsilon}\|_\infty$, then

$$\|\delta_{\mathcal{N}}\|_1 \leq 3\|\delta_{\mathcal{S}}\|_1$$

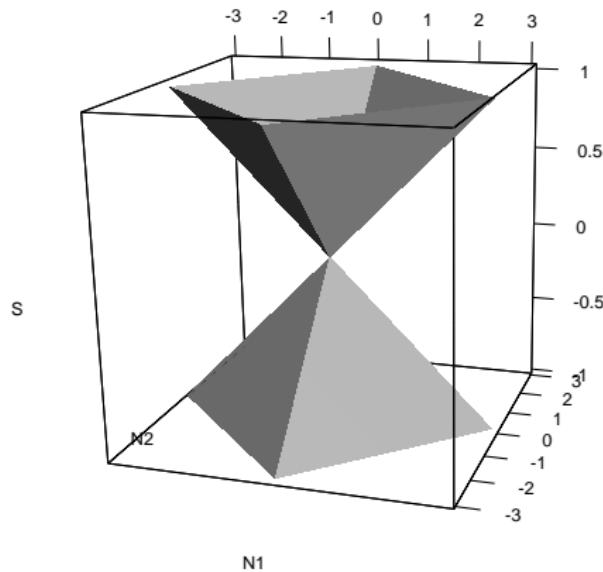
Examples

- For example, suppose $\mathbf{X}^\top \mathbf{X}/n$ looks like this:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

- We are in trouble if \mathcal{S} contains either feature 2 or feature 3
- However, if $\mathcal{S} = \{1\}$ then there are no flat directions that lie within the lasso cones
- Second example: Suppose $\mathcal{S} = \{1\}$ and $\mathbf{x}_1 = \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4$; then $L(\beta)$ would be perfectly flat in the direction $\delta = (1, -1, -1, -1)$, with $\|\delta_{\mathcal{N}}\|_1 \leq 3\|\delta_{\mathcal{S}}\|_1$ satisfied – this kind of \mathbf{X} must be ruled out also

Illustration



Restricted eigenvalue condition

- Let us now formally state the *restricted eigenvalue condition*, which I will denote $\text{RE}(\tau)$: There exists a constant $\tau > 0$ such that

$$\frac{\frac{1}{n} \boldsymbol{\delta}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\delta}}{\|\boldsymbol{\delta}\|_2^2} \geq \tau$$

for all nonzero $\boldsymbol{\delta}$: $\|\boldsymbol{\delta}_{\mathcal{N}}\|_1 \leq 3\|\boldsymbol{\delta}_{\mathcal{S}}\|_1$

- Note: This condition is specific to linear regression; the general condition is known as *restricted strong convexity* and would consist of replacing $\mathbf{X}^\top \mathbf{X}/n$ with $\nabla^2 L(\boldsymbol{\beta})$

Other conditions

This is certainly not the only condition that people have used to prove things in the high-dimensional setting; other similar conditions include

- Irrepresentable condition
- Restricted isometry property (RIP)
- Compatibility condition
- Coherence condition
- Sparse Riesz condition

All of these conditions require that \mathbf{X}_S is full rank as well as placing some sort of restriction on how strongly features in \mathcal{S} can be correlated with features in \mathcal{N}

Estimation consistency

- With this condition in place, we're ready to prove the following theorem
- Theorem:** Suppose \mathbf{X} satisfies RE(τ) and $\lambda \geq \frac{2}{n} \|\mathbf{X}^\top \boldsymbol{\varepsilon}\|_\infty$; then

$$\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 \leq \frac{3}{\tau} \lambda \sqrt{|\mathcal{S}|}$$

- Corollary:** Suppose \mathbf{X} satisfies RE(τ), $\mathbf{y} = \mathbf{X}\boldsymbol{\beta}^* + \boldsymbol{\varepsilon}$ with $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, and $\lambda = 2\sigma \sqrt{c \log(p)/n}$; then

$$\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 \leq \frac{6\sigma}{\tau} \sqrt{\frac{c |\mathcal{S}| \log p}{n}}$$

with probability $1 - 2 \exp\{-\frac{1}{2}(c - 2) \log p\}$

Remarks

- This rate makes a lot of sense:
 - The error of the oracle estimator is on the order $\sigma\sqrt{|\mathcal{S}|/n}$: no method can estimate \mathcal{S} parameters based on n observations at a better rate than this
 - The $\log p$ term is the price we pay to search over p features in order to discover the sparse set \mathcal{S}
- Note also the dependence on the eigenvalue parameter τ ; in particular, if the minimum eigenvalue is close to 0, the estimate rate will suffer significantly

Another look at prediction error

- Now that we've made some assumptions about \mathbf{X} and β^* , does this affect our prediction accuracy?
- Theorem:** Suppose \mathbf{X} satisfies RE(τ) and $\lambda \geq \frac{2}{n} \|\mathbf{X}^\top \varepsilon\|_\infty$; then

$$\frac{1}{n} \|\mathbf{X} \hat{\beta} - \mathbf{X} \beta^*\|_2^2 \leq \frac{9}{\tau} \lambda^2 |\mathcal{S}|$$

- Corollary:** Suppose \mathbf{X} satisfies RE(τ), $\mathbf{y} = \mathbf{X} \beta^* + \varepsilon$ with $\varepsilon_i \stackrel{\perp}{\sim} N(0, \sigma^2)$, and $\lambda = 2\sigma \sqrt{c \log(p)/n}$; then

$$\frac{1}{n} \|\mathbf{X} \hat{\beta} - \mathbf{X} \beta^*\|_2^2 \leq 36c \frac{\sigma^2}{\tau} \frac{|\mathcal{S}| \log p}{n}$$

with probability $1 - 2 \exp\{-\frac{1}{2}(c-2) \log p\}$

Remarks

- We have now derived two results concerning the prediction error of the lasso:
 - No assumptions on \mathbf{X} or β^* : $\text{MSPE} = O(n^{-1/2})$, the “slow rate”
 - β^* sparse, \mathbf{X} satisfies $\text{RE}(\tau)$: $\text{MSPE} = O(n^{-1})$, the “fast rate”
- Further theoretical work has shown that these bounds are in fact tight: no method can achieve the fast rate without additional assumptions

Irrepresentable condition

- Finally, we'll take a look at the selection consistency of the lasso in high dimensions, although we're not going to have time to prove our result in class
- We begin by noting that our restricted eigenvalue condition is not enough to establish selection consistency; we need something stronger
- The feature matrix \mathbf{X} satisfies the *irrepresentable condition*, which I will denote $\text{IR}(\tau)$, if there exists $\tau > 0$ such that

$$\|(\mathbf{X}_S^\top \mathbf{X}_S)^{-1} \mathbf{X}_S^\top \mathbf{X}_{\mathcal{N}}\|_\infty \leq 1 - \tau,$$

where $\|\mathbf{A}\|_\infty = \max_j \|\mathbf{a}_j\|_1$

Remarks

- Note that for all $j \in \mathcal{N}$, the irrepresentable condition places a bound on $(\mathbf{X}_{\mathcal{S}}^\top \mathbf{X}_{\mathcal{S}})^{-1} \mathbf{X}_{\mathcal{S}}^\top \mathbf{x}_j$, the coefficient for regressing \mathbf{x}_j on the features in \mathcal{S}
- In words, this is saying no noise feature can be highly “represented” by the true signal features; if this were the case, we might select the noise feature instead of the true signal
- For example, if $\mathbf{X}_{\mathcal{S}}$ and $\mathbf{X}_{\mathcal{N}}$ were orthogonal, then $\tau = 1$
- Note that the $\text{IR}(\tau)$ condition requires $\Sigma_{\mathcal{S}} = \frac{1}{n} \mathbf{X}_{\mathcal{S}}^\top \mathbf{X}_{\mathcal{S}}$ to be invertible; let ξ_* denote its minimum eigenvalue

Selection consistency theorem (Wainwright, 2009)

Theorem: Suppose that \mathbf{X} satisfies $IR(\tau)$ and $\mathbf{y} = \mathbf{X}\beta^* + \varepsilon$ with $\varepsilon_i \stackrel{\text{ iid }}{\sim} N(0, \sigma^2)$; let

$$\lambda = \frac{8\sigma}{\tau} \sqrt{\frac{\log p}{n}}$$
$$B = \lambda \left(\frac{4\sigma}{\sqrt{\xi_*}} + \|\Sigma_{\mathcal{S}}^{-1}\|_{\infty} \right)$$

Then with probability at least $1 - c_1 \exp\{-c_2 n \lambda^2\}$, the lasso solution $\hat{\beta}$ has the following properties:

Selection consistency theorem (Wainwright, 2009) (cont'd)

- **Uniqueness:** $\hat{\beta}$ is unique
- **Estimation error bound:** $\|\hat{\beta} - \beta^*\|_\infty \leq B$
- **No false inclusions:** $\hat{\mathcal{S}} \subseteq \mathcal{S}$
- **No false exclusions:** $\hat{\mathcal{S}}$ includes all indices j such that $|\beta_j^*| > B$ and is therefore selection consistent provided that all elements of $\beta_{\mathcal{S}}^*$ are at least that large