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Introduction

• So far in this class, we have spent a lot of time talking about
the selection of individual variables
• In many regression problems, however, predictors are not
distinct but arise from common underlying factors
• The most obvious example of this occurs when we represent a
categorical factor by a group of indicator functions, but this
actually comes up fairly often:
◦ Continuous features may be represented by a group of basis

functions
◦ Groups of measurements may be taken in the hopes of

capturing unobservable latent variables
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Potential advantages of grouping

• Today’s lecture will look at these cases where features can be
organized into related groups, and focus on methods for
selecting important groups and estimating their effects
• One could, of course, still use methods like the lasso in these
cases
• However, if there is indeed information contained in the
grouping structure, by ignoring it these methods will likely be
inefficient
• Furthermore, by selecting important groups of variables, we
should obtain models that are more sensible and interpretable
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Notation

To proceed in the grouped variable case, let us extend our usual
notation as follows:
• We denote X as being composed of J groups

X1,X2, . . . ,XJ , with Kj denoting the size of group j; i.e.,∑
jKj = p

• As usual, we are interested in estimating a vector of
coefficients β using a loss function L which quantifies the
discrepancy between the observations y and the linear
predictors η = Xβ =

∑
j Xjβj , where βj represents the

coefficients belonging to the jth group
• Covariates that do not belong to a group may be thought of
as a group of one
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The group lasso penalty

• Consider, then, the following penalty, known as the group
lasso penalty:

Q(β|X,y) = L(β|X,y) +
∑
j

λj
∥∥∥βj∥∥∥2

• This is a natural extension of the lasso to the grouped variable
setting: instead of penalizing the magnitude (|βj |) of
individual coefficients, we penalize the magnitude (‖βj‖2) of
groups of coefficients
• To ensure that the same degree of penalization is applied to
large and small groups, λj = λ

√
Kj ; we will discuss the

reasoning behind this in a bit
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Group orthonormal setting

• To gain insight into other penalties, we have considered the
orthonormal setting in which x>

j xk = 0 for j 6= k

• The equivalent for the grouped variable case is to suppose
that X>

j Xk = 0 for j 6= k

• In what follows, we will also suppose that 1
nX>

j Xj = I for all
j; we will discuss this condition further in the next section
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Group orthonormal solution

Theorem: Suppose X>
j Xk = 0 for j 6= k and 1

nX>
j Xj = I for all

j. Letting zj = 1
nX>

j y denote the OLS solution, the value of β
that minimizes

1
2n(y−Xβ)>(y−Xβ) +

∑
j

λj
∥∥∥βj∥∥∥

is given by

β̂j = S(‖zj‖, λj)
zj
‖zj‖

,

where S(z, λ) denotes the soft-thresholding operator
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Geometry of solution

1
nX>

j Xj 6= I 1
nX>

j Xj = I
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Group MCP and SCAD

• The fact that group penalization reduces to a one-dimensional
problem in the group orthonormal setting means that
extending it to MCP and SCAD penalties is straightforward
• For example, if we replace the group lasso penalty with a
group MCP penalty P (β) =

∑
j MCP(‖βj‖;λj , γ), the

solution is

β̂j = F (‖zj‖, λj , γ) zj
‖zj‖

,

where F (z|λj , γ) is the firm thresholding penalty
• Likewise for SCAD and its thresholding solution
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A closer look at the orthonormality assumption

• To solve for β̂, one’s first instinct might be to apply this
closed-form solution to each group sequentially, as we did with
coordinate descent
• We need to be careful, however: our closed form solution
assumed 1

nX>
j Xj = I, which is not the case in general

• Nevertheless, it turns out we can always make this assumption
hold by transforming to the orthonormal case and then
transforming back to obtain solutions on the original scale
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Orthonormalizing Xj

• Consider the eigendecomposition of group j:

1
n

X>
j Xj = QjΛjQ>

j ,

where Λj is a diagonal matrix containing the eigenvalues of
1
nX>

j Xj and Qj is an orthonormal matrix of its eigenvectors
• Now, we may construct a linear transformation

X̃j = XjQjΛ−1/2
j with the following properties:

1
n

X̃>
j X̃j = I

X̃jβ̃j = Xj(QjΛ−1/2
j β̃j)

where β̃j is the solution on the orthonormalized scale
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Remarks

• This procedure is not terribly expensive from a computational
standpoint; although computing the decomposition requires
O(p3) steps, the decompositions are being applied only to the
groups, not the entire design matrix
• Furthermore, the decompositions need only be computed once
initially, not with every iteration
• We could use a Cholesky decomposition here instead of an
eigendecomposition, but the advantage of the
eigendecomposition is that it works for groups that do not
have full rank
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Group standardization

• Orthonormalization is essentially the grouped-variable
equivalent of standardization
• To explore this point further, note that we could consider
penalizing on the scale of the linear predictors, not the
coefficients themselves: Penalty = λ

∑
j‖ηj‖, where

ηj = xjβj for the single-variable case or Xjβj in the
grouped-variable case
• Note that this reduces to the lasso penalty for standardized
design matrix and the group lasso penalty when the groups
have been orthonormalized
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Connection with χ2/F tests

• As a final justification for group orthonormalization, consider
the form of the (UMPI) χ2/F test for adding a group in
classical linear regression
• In that case, the test statistic for H0 : βj = 0 takes the form

‖Pjr0‖2 ≥ σ2χ2
Kj ,1−α

(or ≥ σ̂2FKj ,rdf,1−α), where Pj = Xj(X>
j Xj)−1X>

j is the
orthogonal projection operator for group j
• Now, since ‖Pjr0‖ ∝ ‖Zj‖ for an orthonormal group, we can

see that the UMPI χ2 test is essentially equivalent to the
group lasso inclusion condition ‖Zj‖ > λj , provided that λj
includes a

√
Kj term to account for the size of group j
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Algorithm

With these ideas in place, we can apply the coordinate descent
idea in a groupwise fashion; this algorithm is known as group
descent, blockwise coordinate descent, or the “shooting algorithm”

repeat
for j = 1, 2, . . . , J

zj = X>
j r + βj

β′j ← S (‖zj‖, λj) zj/‖zj‖
r′ ← r−Xj(β′j − βj)

until convergence
For MCP/SCAD, we would replace the soft thresholding step with
the appropriate thresholding operator
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Remarks

• Although there is an initial cost in terms of computing the
SVD for each group, once this is done the cost per iteration
for the group descent algorithm is simply O(np)
• Because the penalty is separable in terms of the groups βj ,
and because we are updating whole groups at once, the
algorithm is guaranteed to decrease the objective function
with every step and to converge to a minimum, as it was for
the ordinary lasso
• Extensions to other loss functions (GLMs, etc.) follow along
the lines we discuss in the previous topic
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Glaucoma-AMD study

• As a case study, we will consider data from a study at the
University of Iowa investigating the genetic causes of primary
open-angle glaucoma (GLC) and age-related macular
degeneration (AMD)
• In the study, 400 AMD patients and 400 GLC patients were
recruited, and their genotype determined at 500,000 genetic
loci, the idea being that each group could serve as the control
group group for the other disease
• We will not consider all 500,000 genetic loci, but rather a
subset of 497 SNPs from 30 genes that have been previously
indicated in AMD
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Grouping

• There are two ways we could consider grouping the data here,
and for the sake of illustration, we will do both
• At each genetic loci, there are three possibilities: AA, AB,
BB, where A and B stand for the two alleles present in the
population at those loci
• Thus, we could consider constructing a design matrix with
indicators for each possibility and group by genetic locus
(p = 1491, J = 497)
• Alternatively, we could represent each locus by the number of
B alleles (0/1/2) and group by the gene that the locus
belongs to (p = 497, J = 30)
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grpreg

• Fitting group lasso (and group MCP/SCAD) models can be
carried out using the R package grpreg
• In what follows, suppose X is the 800× 497 matrix of 0/1/2

counts, XX is the 800× 1, 491 matrix of indicators, Gene is a
length 497 vector denoting the gene that each column of X
belongs to, and Locus is a length 1,491 vector denoting the
locus that column of XX belongs to
• Here, Locus and Gene are both factors or unique IDs

(integers, character strings) that can be coerced into factors
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grpreg (cont’d)

• The syntax of grpreg is similar to glmnet and ncvreg,
although we must also pass the function a group option that
describes the grouping structure
• So, for the first approach (group by gene) we would have

cv.grpreg(X, y, group=Gene, family="binomial")

while for the second (group by locus) we would have
cv.grpreg(XX, y, group=Locus, family="binomial")

• The same sorts of downstream methods such as
plot(cvfit), summary(cvfit), and predict(cvfit) are
available after the models have been fit
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Remarks

• In this case, there is a subtle, but not overwhelming,
advantage to grouping
• Grouping achieves a slightly higher R2, 0.051 to 0.044, as well

as a slightly lower misclassification error, 40% vs. 42%
• However, at their respective λ values for which that minimum
misclassification error is achieved, the ordinary lasso selects
loci ranging across all 30 genes, while the group lasso confines
its selects to 24, achieving greater sparsity at the group level
and likely, more interpretable results
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R2: Grouping by locus
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Remarks

• Incorporating grouping information again appears to improve
prediction compared to the ordinary lasso
◦ Lower prediction error (40% vs. 43%)
◦ Higher R2 (0.041 vs. 0.035)

• Ordinary lasso selects 57 features across 57 loci; group lasso
selects 47 features across 16 loci
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