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Introduction

e Today, we will discuss a different kind of sparsity arising from
structure among the features: rather than being grouped, we
will consider the case in which features are ordered

e Ordered situations arise in many situations, such as
spectroscopic data, temporal data, and spatial data; we will
discuss its application to genetics and copy number variation
later

e It can also be applied in situations where the features are not
naturally ordered, but could be ordered using, say, hierarchical
clustering (as could the group lasso)
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Fused lasso

e The fused lasso estimates B are the values minimizing the
following objective function:

p—1
QBIX,y) = o=lly = XBI3 + AllBl1 + A2 > _ |8 — Bjt1l

J=1

e Note that the penalty consists of two pieces:

o A lasso penalty that encourages 8; =0
o A fusion penalty that encourages 3; to be equal to ;41 and

Bi-1
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Fused lasso signal approximator

e A special case of the fused lasso that we will concentrate on
today is the situation where X =1

e To make it clear which case we are dealing with, | will use 0
to denote the solutions to this problem of minimizing

n—1

QOly) = 3lly — 0113 + Ml6ll1 + A2 > 105 — 641
j=1

e This version of the problem is sometimes called the “fused
lasso signal approximator”, in the sense that it amounts to
approximating a one-dimensional signal with a series of zeroes
and piecewise constant functions
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Coordinate descent: Unsuitable?

e Solving this optimization problem, however, introduces some
new challenges that we have not yet encountered

e Recall the two basic conditions necessary for coordinate
descent algorithms to converge

o A differentiable loss function (this was violated in
LAD/quantile regression)
o A separable penalty function (this is violated in the fused lasso)

e As we will see, coordinate descent does not work well at all for
solving the fused lasso problem; new tools are needed
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Toy data
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To get a better sense of what’s going on, let’s consider a toy
data set: y ={0,0,0,1,1,1,0,0,0}

For the purposes of illustration, let Ay =0 and \y = 1/2
We can see that Q(y) = 1, while Q(0) = 1.5, so

Qy) < Q(0)

Nevertheless, if we start at the initial value 8 = 0, the
coordinate descent algorithm can never escape zero

By only considering one-coordinate-at-a-time transitions, the

CD algorithm misses the fact that we could simultaneously
move {0y, 05,0} and obtain a better solution
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ADMM: Introduction

There are a variety of alternative algorithms we could use
here, but this is a good opportunity to discuss a flexible and
useful algorithm called the alternating direction method of
multipliers, or ADMM, algorithm

As we will see, ADMM algorithms converge for a wider range
of problems than CD; in addition (although we won't focus on
this today), they lend themselves to parallelization in a way
that CD algorithms do not, which has led to a considerable
amount of recent interest in them

The essence of the ADMM algorithm is that we will introduce
new variables {§; = 6, — 9j+1}§:11 and alternate between
updating 6, updating §, and reconciling their differences
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Reframing the problem (A\; = 0 for simplicity)

Specifically, let us reframe the problem as: minimize
1 2
lly —6ll2 + All6]|x
subject to the constraint
D6 =4,

where D is the (n — 1) x n matrix of first-order differences:

1 -1 0 -~ 0 O

0 1 -1 0 O
D= i

0 0 0 1 -1
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The augmented Lagrangian

e In general, Lagrange multipliers are a useful way of solving
optimization problems with constraints

e The ADMM algorithm uses a modification of this approach in
order to achieve greater robustness; we will minimize the
augmented Lagrangian

sy = 0113 + X8|l + §1DO — & +ul|3 - §]lull3,

where u are the (scaled) Lagrange multipliers (also known as
dual variables)

e The algorithm thus consists of alternately updating 6, 8, and
u, all of which have simple, closed forms
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ADMM updates

e Proposition: Given § and u from iteration k, the value of 6
that minimizes the augmented Lagrangian for iteration k41 is

0= (D'D+I)"'[y+pD" (8 —u)

e Proposition: Given 6 from iteration £ 4 1 and u from
iteration k, the value of § that minimizes the augmented
Lagrangian for iteration k + 1 is

5 =15(p(DO +u), )

e To update u, on the other hand, we apply an update with
step size p:

uk+1 — uk + p(Dak—H _ 6k+1)
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ADMM convergence for the toy data
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e Recall that Q(0) = 1.5 and Q(y) = 1; we now have

Q) =0.75
e In other words, the decoupling between @ and § introduced by
the ADMM prevented the algorithm from being stuck at O
and allowed us to reach the global minimum
e The step size p affects convergence (for the toy data, | used
p=0.5):
o p too small and 6, & remain uncoupled
o p too large and 6, § too coupled; don't have the flexibility to
reach optimal solution
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Path algorithms

Patrick Breheny

ADMM is a very flexible framework worth knowing about

In the specific context of the FLSA, however, there are also a
variety of exact solutions that can be calculated using an
algorithm somewhat analogous to the LARS algorithm for the
regular lasso

The fast solver provided by the R package f1sa (which we
will use in the case study coming up) uses one of these
algorithms, not ADMM

These exact algorithms tend to be quite a bit faster for small
problems; for larger problems, and for going outside the FLSA
framework, ADMM is often better
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Copy number variation

Broadly speaking, humans have two copies of their genome

Occasionally however, a region of the genome is duplicated or
destroyed; this is known as copy number variation (CNV) and
it occurs in all humans

Copy number variation tends to be more extreme in cancer,
however: gains or losses of large regions of the genome often
trigger uncontrolled cell growth

There are a variety of methods for measuring copy number
variation in a genome-wide fashion; the data we will look at
today comes from a method known as comparative genomic
hybridization (CGH)
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glioma data
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The data we will look at today is a popular benchmark in the
field

It consists of CGH data from two glioblastoma tumors
(chromosome 7 in one patient, chromosome 13 in another)

spliced together in order to create a challenging data set for
CNV detection:

o Both gains and losses are present
o The copy number changes occur over both short and large
scales
CGH data is typically reported on the log, ratio scale, so that
0 means 2 copies (i.e., a normal number of copies),
log,(3/2) = 1 means a gain of a copy, and log,(1/2) = —1
means the loss of a copy
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The flsa package

e There are a variety of packages that solve the general fused
lasso problem; at the moment, none stand out (to me, at
least) as the best one

e For the signal approximator special case, however, there is a
nice package called f1sa that works quite well

e It's basic usage is
flsa(y, lambdal=0, lambda2=1/2)
e Often, however, it is best to fit the whole path with
fit <- flsa(y)
followed by
flsaGetSolution(fit, lambdal=0.1, lambda2=1/2)
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Fused lasso solution

Log, ratio

[ T T T T 1
0 200 400 600 800 1000

Genome order

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)



o Image de-noising
Case studies & extensions

Two-dimensional fused lasso

e The fused lasso, as we have presented it, accounts for
one-dimensional ordering

e Of course, two-dimensional ordering is also common: spatial
statistics, images

e Consider, then, the two-dimensional fused lasso (which we
present here in signal approximator form):

QB) =3lY-0|%+ /\Z (165 — 0it1,5

1:7.7

+ 1655 — bij+1l) s

a2,

where ||A|| is the Frobenius norm: ||All; = ij @i

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)



Fused | CGH data
Optim Image de-noising
Case studies & extensions Nearly isoton

Image de-noising

e A major application of the two-dimensional fused lasso is in
image processing

e The idea here is that there exists a “true” image, but we only
see a noisy image, from which we would like to recover the
true image

e In this context, the two-dimensional fused lasso is known as
total variation de-noising; this idea predates the fused lasso,
although recent advances in convex optimization have led to
better algorithms
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Fused lasso solution

Patrick Breh University of lowa High dimensional data analysis (BIOS 7:



Encou

Case studies & extensions Nearly isotonic regression

raging monotone solutions
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One final extension of the fused lasso: let us consider the
following very simple modification, replacing the absolute
value in the penalty with the positive part (+)4:

n—1

QBIX,y) =4lly —6l5+ A > _(6; — 0;41)+
j=1

In other words, increasing values of 6 are not penalized at all,

but decreasing values are penalized as in the fused lasso

Such a method might be useful in fitting a line to data in
situations where we expect a monotone relationship
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Isotonic regression

e This problem (fitting a monotone line to data) has a long
history in statistics dating back to the 1950s, and is known as
isotonic regression

e The modification of the fused lasso introduced on the previous
slide is one way to solve this problem: by setting A large
enough, we can force the solution to be monotone

e However, by merely encouraging monotonicity rather than
requiring it, we can also accomplish something new; this idea
is known as nearly isotonic regression, and is implemented in
the R package neariso
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Nearly isotonic regression: Global warming
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