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Introduction

In our final lecture, we will explore some interesting ways of
applying/extending the penalties we have learned about so far in
this course to four other statistical methods:

e Additive models

e Principal components analysis

Models with interactions

Graphical models

Patrick Breheny
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Basis functions

e Suppose for the moment that we have just a single feature x
and we are interested in estimating E(y|z) = f(x)

e A common approach for extending the linear model f(x) =z
is to augment x with additional, known functions of x:

M
flz) = Z Bmhm (),
m=1

where the {h,,} are called basis functions

e Because the basis functions {h,,} are prespecified and the
model is linear in the new variables, ordinary least squares
approaches can be used (at least in low-dimensional settings)
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This idea is not new to you, as you have certainly worked with
polynomial terms before

However, polynomial terms introduce undesirable side effects:
each observation affects the entire curve, even for x values far
from the observation

Not only does this introduce bias, but it also results in
extremely high variance near the edges of the range of x

As Hastie et al. (2009) put it, “tweaking the coefficients to
achieve a functional form in one region can cause the function
to flap about madly in remote regions”
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Problems with ponnom|a| regression (cont

To illustrate this, consider the following simulated example (gray
lines are models fit to 100 observations arising from the true f,
colored red):
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Splines

For this reason, local basis functions, which ensure that a
given observation affects only the nearby fit, not the fit of the
entire line, are often preferred

We will focus on a specific type of local bases called splines,
which are just piecewise polynomials joined together to make
a single smooth curve

To understand splines, we will gradually build up a piecewise
model, starting at the simplest one: the piecewise constant
model

First, we partition the range of x into K + 1 intervals by
choosing K points {&,} | called knots

Patrick Breheny
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Splines

piecewise constant model (con
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piecewise linear model
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Splines

The continuous piecewise linear model
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Basis functions for piecewise continuous models

These constraints can be incorporated directly into the basis
functions:

hi(z) =1, hao(z) =2, hs(z)= (2 &)+, ha(z)=(2—E&)+,

where (-)1 denotes the positive portion of its argument:

r ifr>0
T+ = .
0 ifr<o

e Note that the degrees of freedom add up: 3 regions x 2
df /region - 2 constraints = 4 basis functions

e This set of basis functions is an example of what is called the
truncated power basis; it can be extended to any order of
polynomials
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Quadratic splines
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Cubic splines
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Natural cubic splines

e Polynomial fits tend to be erratic at the boundaries of the
data; naturally, cubic splines share the same flaw

e Natural cubic splines ameliorate this problem by adding the
additional (4) constraints that the function is linear beyond
the boundaries of the data
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Splines

Natural cubic splines (cont'd)
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Natural cubic splines, 6 df
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Natural cubic splines, 6 df (cont'd)
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Additive models

Patrick Breheny

When we have multiple features, a natural extension of basis
functions is to assume an additive relationship:

M
FO) =" Bmjhumi(x5);

j m=1

such models are called additive models or generalized additive
models (GAMs)

If the number of coefficients is large, we will not wish to use
maximum likelihood to estimate them, as we have seen
several times in the course

Furthermore, it is often the case that many potentially useful
features are present, but we expect most of them to be
unrelated to the outcome
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Connection with group lasso

e However, it makes little sense in this scenario to carry out
selection at the level of the individual basis functions; we want
to select features, and if a feature is selected, we want all of
its basis functions in the model

e Representing the problem as a group lasso model, we have

Q(BIELY) = lly — HBJ2 + Y118,
J

where H is the expanded design matrix with elements
hanj (2i5)

e This idea was originally proposed by Ravikumar et al. (2009),
who named it sparse additive models (SPAM)
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Example: BBS data

e To illustrate how sparse additive models work, let us apply one
to the rat eye data; for the sake of simplicity, I'll restrict the
analysis to the 857 genes on chromosome 5

e For the sake of illustration, we'll compare the group lasso fit
with a group MCP fit (penalty="grMCP")

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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Results: Group Lasso

The group lasso model selects 49 genes, achieving an R? of 0.72
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Results: Group MCP

The group MCP model selects just 5 genes, with R? = 0.59
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The first gene to enter the model is PNISR; the PNI stands for
PNN-interacting, where PNN is a gene that plays a critical role in
proper eye development
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Our second topic for today is the application of penalized
regression methods to principal components analysis

The key idea behind principal components analysis is to
reduce the dimension of X while accounting for as much of
the information in X as possible

This aim is achieved by transforming to a new set of variables
(the principal components) that are linear combinations of the
original variables

The new set of variables have lower dimension and are
uncorrelated, both of which can greatly simplify the analysis

University of lowa High dimensional data analysis (BIOS 7240)
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Principal components in terms of SVD components

e Suppose that we have standardized X, and let X = UDV"
be the singular value decomposition of X

e By convention, the singular values {d;} and their associated
vectors {u;} and {v;} are ordered, so that d; > dy > --- > d,

e Now, the variables d;u; are called the principal components of
the original data X, for reasons that we will now describe
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Properties of principal components

Patrick Breheny

First, note that the principal components are linear
combinations of the original variables:

XVj = dej

Furthermore, Var(diu;) > Var(dauz) > --- > Var(dpu,)
Indeed, out of all possible vectors z that can be formed from a
normalized linear combination of the original explanatory
variables (i.e., such that z = Xa where a"a = 1), the variable
with the largest variance is dyu;

Out of all possible normalized linear combinations z, the one
that has the largest variance and is orthogonal to the first
combination (i.e., such that z"u; = 0) is daug, and so on

University of lowa High dimensional data analysis (BIOS 7240)
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More terminology

To summarize,

e The vectors v; (the columns of V) are the principal
component directions, or loadings, and they describe the
transformation process by which the new variables are created
out of the old

e The vectors u; (the columns of U) are the normalized
principal components (sometimes called the principal
component scores)

e The singular values d; are used to rank the principal
components in term of importance
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Example: WHO-ARI data

[llustration
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Example: WHO-ARI data

Sparse principal components

e One downside of principal components is that they can be
difficult to interpret: the new variables are linear combinations
of the old ones, and if p is large, the linear combination will
be complex

e On a related note, suppose an investigator wanted to be able
to measure a small number of features, but retain as much of
the information in X as possible

e In both situations, the fact that the principal components are
composed of all the original features poses a problem; an
appealing extension would be components that are sparse with
respect to the original features

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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Principal components as a regression problem

e |t turns out that principal components can be written as a
regression problem, where the loadings can be found by
minimizing

X~ UDVT|% = [X - XVVT|

such that VTV =1, where ||A||r is the Frobenius norm
defined previously (||A||% = sum of squares of all elements)

e In a clever paper, Zou et al. (2006) showed that we can also
find the loadings by minimizing

[X —XBAT||%  suchthat ATA =1

with respect to both A and B, where v; = b,/ ||bj]|
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Introducing sparsity

e The advantage of this formulation is that it is straightforward
to solve for A and B separately, treating the other as fixed

e In particular, treating A as fixed, solving for b; is equivalent
to minimizing
2
1Xa; + Xby %,
which is simply least squares regression with y = Xa;

e A natural sparse extension, then, is to add an L penalty: find
b; by minimizing

I = Xbj % + Alfby |2

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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Sparse PCA

e The approach proposed by Zou et al., then, was to solve for
sparse principal components by minimizing

IX = XBAT|E + > Ajlibjlla+ o D |[bylJ*
i i

such that ATA =1, where the extra ridge (elastic net)
penalty is introduced to guarantee unique solutions
e As discussed on the previous slide, the problem can be solved
by alternating updates for A and B:
o Updating B is equivalent to solving k elastic net problems,
where k is the desired number of components

o We're skipping the details for the update of A, but it amounts
to computing the SVD of X" XB
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Choice of penalties

e The choice of Ag is not particularly important; it is typically
just set to some arbitrary small positive value

e The selection of the \; parameters is more complex
® One could try out several values of {\;} and attempt to make

selections on the basis of the proportion of explained variance
in X

o Alternatively, a convenient thing to do in practice is simply to
set \; at a value such that exactly, say, 3 terms appear in
each principal component

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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WHO-ARI pneumonia data

Patrick Breheny

As an example of how this works in practice, let’s apply the
sparse PCA method to our WHO-ARI data set

This is the kind of data set for which principal components
are particularly attractive, as several features measure
essentially the same thing; for example, it is not particularly
meaningful to isolate the effect of changes in feeding ability
while keeping sucking ability constant

Still, ordinary principal components are difficult to interpret
here, as they are linear combinations of all 67 variables
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The sparse PCA approach described here is implemented in
the R package sparsepca
As with regular PCA, it is typically preferable to apply sparse

PCA to the standardized design matrix (scale=TRUE, which is
not the default):

fit <- spca(X, k=5, 0.1, scale=TRUE) # or use std(X)
V <- fit$loadings
Z <= X %*% V # Principal components

Here, K is the desired number of components and A = 0.1; the
package unfortunately does not solve the entire path
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Results: Components

The first five sparse principal components are

e PC1, “Energy”: Attentive, eating, not drowsy, quality of
crying, amount of movement

e P(C2, "Respiratory problems”: Respiratory distress, lower chest
in-drawing, nasal flaring

e PC3, “Hydration": Skin turgor, dehydrated, sunken fontanelle
o PC4, "Size": Weight, length, head circumference
e PC5, “Agitation”: Sleeping less, crying more

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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Example: WHO-ARI data

Results: Predictive of pneumonia?

Fitting a linear regression for pneumonia score on these principal
components, XV, we have

V1 —_——— <0.0001
V2 —_— <0.0001
V3 —_——— 0.16
\Z —_— <0.0001
V5 —_—— 0.24

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

So energy and respiratory problems clearly increase the likelihood
of pneumonia, while size decreases it; it is not clear that hydration
and agitation are useful in predicting pneumonia
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Motivation

e A topic we have not really discussed thus far is how we can

use penalized regression to select variables with potential
interactions

e |n principle, of course, you could just create a big design
matrix with all the main effect and interaction terms included;
however, this has two potential drawbacks:

o We might select interactions without including the
corresponding main effect term

o We would likely end up with lots of false selections among the
interaction terms because so many are present

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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Group lasso setup

One approach is to set the problem up as a group lasso
problem

To illustrate, let's consider the simplest possible scenario, in
which we have two features x; and xo, along with their
interaction x;.9

Now let us construct a 5-column design matrix with columns
(x1 X2 X1 X2 Xi.2), where we will consider the first and
second columns as groups containing just a single element,
and the last three belonging to a combined group (i.e.,
g=c(1,2,3,3,3))

Patrick Breheny
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Interpretation and latent variable representation

e The idea behind this approach is that we are parsing the main
effect of x7 into two latent portions: the pure main effect
portion and the portion belonging to the interaction group

e letting «v denote the the coefficients for this expanded design
matrix, the main effect for x; would then be

X171 + X173 = X1(71 +73)
=x15
e As a consequence of this setup, if we select x7.0, we are

guaranteed to also include its two main effects in the model as
well

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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Simulation example

e To see how well this works, let's simulate some data under the
following conditions:

o n =70, p=20; so 210 potential features
o x;, ¢ all drawn from N(0, 1)
© Yi = Xq1 + Xiq — Xi1X2 + &

o We'll fit both an ordinary lasso and a group lasso model using
the latent variable representation we described earlier (this is
implemented in the R package glinternet), using
cross-validation to select A\ for both models

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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Results: Lasso

The ordinary lasso model selects 11 variables: 2 main effects
and 9 interaction terms

Of note, it does select all the true effects

However, of the 9 interaction terms, none of them have both
main effects selected

The maximum cross-validated R? achieved by the model is
0.80

Patrick Breheny
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Results: glinternet

e The latent variable group lasso approach selects 5 variables: 4
main effects and 1 interaction (the true interaction)

e By construction, both main effects (for x; and x2) are
included in the model for the selected interaction, x1.o

e The model also achieves a slightly higher R?, 0.81
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Introduction

e As a final topic in this course, we will briefly discuss how
penalization can be used to estimate network structure in
probabilistic graphical models

e This is a big topic that we're only going to scratch the surface
of; the main thing we will focus on is that graphs encode
conditional independence relationships between variables

e Specifically, if a set of vertices S separates a graph into two
disconnected components A and B, then the variables in A
are independent of the variables in B conditional on the
variables in §

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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[llustration

For example, the

conditional independence
statement @ @

X3 1L Xe.7|Xa5

implies (and is implied by)
the graph
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e For continuous variables, a particularly convenient type of
graphical model is to assume the multivariate normal
distribution X ~ N(u, X); this is known as the Gaussian
graphical model

e For Gaussian graphical models, it is typically more convenient
to work in terms of the precision matrix ® = 37!

e One particularly relevant property of © is that 6;; = 0 implies
that there is no edge connecting nodes ¢ and j in the graph
depicting the conditional independence relationships

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)
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e It can be shown that for a Gaussian graphical model, up to a
constant, the loss (—1/n times the log-likelihood) is

L(®|X) = tr(SO®) — log |O|,

_ 1 T
where S = -5, x; x|

; is the sample covariance matrix

e As you might expect, the maximum likelihood estimator is
unstable and inaccurate when p is large relative to n

e Furthermore, even when p is small, the MLE will not produce
exact zeros for ® (no help for estimating the graph)

e Thus, let us consider the penalized loss:

L(B|X) = tr(SO) —log [©] + A ) _ (0]
ik

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)



Sparse additi
Sparse principal co

Graphic:

Graphical lasso algorithm

e The matrix of penalized score equations is then
S—-e!'+awso,
where ¥;; = 0 0;;]
e Partitioning this equation yields
—s_j+X_; ;B +A0|Bll1 >0,

where ,3 = —H_j/Hj,j

e Thus, we can estimate ©® by repeatedly solving a slightly
modified version of the lasso, in which we essentially
iteratively regress each variable on all the others; this
algorithm is known as the graphical lasso
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