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Introduction

e In today’s lecture, we will discuss the performance of
nonconvex penalties with respect to the signal-to-noise ratio
of the data-generating process, the most critical factor
determining their success relative to the lasso

e We will then turn our attention to the details of model fitting,
discussing algorithms for nonconvex penalties as well as the
impact of nonconvexity on model-fitting
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Signal to noise ratio

Signal to noise ratio

e For linear regression,
Var(Y') = Var(E(Y|X)) + E(Var(Y]X))
= B Var(X)8 + o

e The first term in the sum is known as the signal and the
second term the noise

e Thus, we may define the signal-to-noise ratio

SNR = B Var(X)B/o?
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Signal to noise ratio

SNR and R?

e Recall that we have seen this decomposition before, in
calculating R?, which is also a function of the signal and noise

e In particular, note that

»  SNR
1+ SNR

e As a general piece of advice, | strongly recommend
considering the signal-to-noise ratio when designing
simulations, and avoiding settings where SNR is, say, 50
(R? = .98); is this realistic?
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Signal to noise ratio

Simulation: Setup

e To see the impact of SNR, let's set n = 50, p = 100, and let
all features x; follow independent, standard Gaussian
distributions

e In the generating model, weset 51 =B =03=---=0s #0
and By = fBg = --- = B100 = 0, varying the nonzero values of
81 through (B¢ to produce a range of signal to noise ratios

e For each data set, an independent data set of equal size was

generated for the purposes of selecting the regularization
parameter
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Signal to noise ratio

Simulation: Results

MCP SCAD
08 —
S
) SNR
el
2 — 1
g
— D
§ 06
g —_—d
[}
=
04
2 4 8 16 32 2 4 8 16 32
Y

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7.



Signal to noise ratio

RENMES

e The motivation of MCP/SCAD/etc. is to eliminate bias for
large coefficients; it should not be a surprise, then, that the
advantage of these methods only becomes apparent when
some nonzero coefficients are large

e It is also worth noting that v ~ 3 is generally a reasonable
choice for MCP — its performance was never far from the best
e Also note that the SCAD is somewhat less sensitive to the

choice of ~, in the sense that many values of v produce rather
lasso-like estimates
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Coordinate descent
Algorithms Local approximations
Convexity

Algorithm

Letting Z = n_lx}f"j, F' is the firm-thresholding operator, and

Tscap is the SCAD-thresholding operator, the CD algorithm for

MCP/SCAD is
repeat
forj=1,2,...,p
g =n"' S wyri + B
Bty {F(5j|)\,7) for MCP, or
! Tscap(%|A, ) for SCAD

T T — (EJ('SH) - B]('S))xij for all i
until convergence

The algorithm is identical to our earlier algorithm for the lasso
except for the step in which f3; is updated
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te descent
Algorithms proximations

Convergence

e Although the MCP and SCAD penalties are not convex
functions, Q(5;|B_;) is still convex

e As a result, the coordinate-wise updates are unique and always
occur at the global minimum with respect to that coordinate

« Proposition: Let {8(*)} denote the sequence of coefficients

produced at each iteration of the coordinate descent
algorithms for SCAD and MCP. For all s =0,1,2,...,

QB ) < Q(BY).

Furthermore, the sequence is guaranteed to converge to a
local minimum of Q(8).
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linate descent
Algorithms proximations

Local linear approximation

e For MCP and SCAD, one can obtain closed-form
coordinate-wise minima and use those solutions as updates

e An alternative approach, particularly useful in penalties that
do not yield tidy closed-form solutions, is to construct a local
approximation of the penalty about a point B:

P(18]) = P(181) + P(15])(18] - |8])

* Note that with this approximation, the penalty takes on the
form of the lasso penalty (with P(|3]) playing the role of the
regularization parameter) plus a constant
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linate descent
Algorithms proximations

LLA algorithm

e The approximation is applied in an iterative fashion: at the
sth iteration, letting 5\j = P(|BJ(-S_1)|), the update is given by
solving for the value minimizing

1 L
oy = XBI7+ D Ail5]

i=1

e Note that this equation is essentially identical to the one for
the adaptive lasso; however, the adaptive lasso weights are
assigned in a more or less ad hoc fashion based on an initial
estimator, while the LLA modifications to A are explicitly
determined by the penalty function P
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inate descent
Algorithms approximations

RENMES

e Like coordinate descent, the local linear approximation (LLA)
algorithm is guaranteed to drive the objective function
downbhill with every iteration and to converge to a local
minimum of Q(S3)

e For MCP and SCAD, CD is more efficient, as it avoids the
extra approximation introduced by LLA

o However, LLA is still quite efficient, and a valuable alternative
when dealing with penalties without a simple solution in the
one-dimensional case
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Algorithms
Convexity

Convexity challenges
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While the objective functions for SCAD and MCP are convex
in each coordinate dimension, they are not convex over R?

Thus, multiple minima may exist, each satisfying the KKT
conditions

Neither the CD or LLA algorithms are guaranteed to converge
to the global minimum in such cases

As we have discussed earlier, the existence of multiple minima
poses problems, both numerically (convergence to an inferior
solution) and statistically (increased variance as the solution
jumps from one minima to another)
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Global
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Algorithms af
Convexity

convexity

It is worth noting that it is possible for the objective function
Q) to be convex with respect to 8 even though the penalty
component is nonconvex

Letting cpin denote the minimum eigenvalue of XX /n, the
MCP objective function is strictly convex if v > 1/cpin, while
the SCAD objective function is strictly convex if

v > 1+ 1/Cmin

In this case, the coordinate descent and LLA algorithms will
converge to the unique global minimum of
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Algorithms
Convexity

Is global convexity desirable?
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However, obtaining strict convexity is not always possible or
desirable; for example, in high-dimensional settings where

p > n, ¢min = 0 and the MCP/SCAD objective functions
cannot be globally convex

Nevertheless, as we saw in the earlier simulations (where
p > n), convex penalties do not necessarily outperform
nonconvex in these scenarios

For low signal-to-noise ratios there was indeed some benefit to
increasing ~y in an effort to make the objective function more
convex; however, for larger SNR values, this strategy
diminished estimation accuracy
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Algorithms af
Convexity

Local convexity

e Although Q(B) may not be convex over the entire
p-dimensional parameter space (i.e., globally convex), it is still
convex on many lower-dimensional spaces

e Some authors have advocated choosing solutions in the
“locally convex” portion of the solution path (i.e., based on
the minimum eigenvalues of the active features)

e Thus, local convexity of the objective function will not be an
issue for large A, but may cease to hold as A is lowered past
some critical value \*
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Algorithms
Convexity

Convexity diagnostic: Example (MCP)
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Algorithms

ar
Convexity

RENMES

e As the figure indicates, when A = 0.35, B, clearly minimizes
the objective function, whereas at A = 0.15, Q(B3) < Q(B;)

e For \ = 0.25, however, the objective function is very broad
and flat, indicating substantial uncertainty about which
solution is preferable

e Calculation of the locally convex region (the unshaded region
in the earlier figure) can be a useful diagnostic in practice to
indicate which regions of the solution path may suffer from
multiple local minima and discontinuous paths

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)



Breast cancer gene expression study

Case studies WHO-ARI stud

Introduction
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Let us now revisit two high-dimensional studies from the
previous topic and analyze them with our new reduced-bias
approaches

First, we consider an adaptive lasso model for the BRCA1
gene expression data

As our initial estimator, let's use lasso estimates with A
chosen according to BIC:

fit <- ncvreg(X, y, penalty='lasso')

b <- coef(fit, which=which.min(BIC(fit))) [-1]

(using ncvreg for fitting due to its compatibility with BIC)
Cross-validation would of course be a reasonable alternative

University of lowa High dimensional data analysis (BIOS 7240)



Breast cancer gene expression study

Case studies WHO-ARI stud

Adaptive lasso fit

Once we have the initial estimator, it may be tempting to fit an
adaptive lasso model as follows:

w <- abs(b)“(-1) # Calculate weights

w <- pmin(w, 1el0) # cv.glmnet does not allow
# infinite weights

cvfit <- cv.glmnet(X, y, penalty.factor=w,
lambda.min=1e-5)

but caution is warranted
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Case studies

Adaptive lasso: Cross-validation (biased)
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Breast cancer gene expression study

Case studies

Adaptive lasso: Cross-validation (unbiased)

Variables selected
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Breast cancer gene expression study

Case studies

Regular lasso: Cross-validation
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Breast cancer gene expression study

Case studies WHO-ARI stud

of bias

In the first figure, the CV error is not estimated in an
unbiased manner

The reason is that the left-out fold is not truly external to the
fitting procedure, as it was used to obtain an initial estimator
As a result, prediction error is underestimated

To obtain an (approximately) unbiased estimate of CV error,
one must cross-validate the entire procedure, including the
initial estimate
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RENMES
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CV errors:

o Lasso: 0.20

o Adaptive lasso (biased): 0.18

o Adaptive lasso (unbiased): 0.22
This is an important cautionary example to keep in mind for
the adaptive lasso: flexible, two-stage methods have certain
advantages in terms of simplicity, but are also easy to make
mistakes with

Unfortunately, while existing R packages can be used to fit
adaptive lasso models, there are not currently any
comprehensive software packages for the adaptive lasso (that |
am aware of) that carry out full cross-validation
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MCP analysis
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MCP and SCAD achieve the adaptive lasso’s goal of reducing
the bias associated with the lasso, but do so in a single step
and thus prove a bit more amenable to carrying out inference
concerning predictive accuracy using cross-validation

The ncvreg package is a widely used package for fitting
MCP/SCAD penalized regression models; its syntax is fairly
similar to glmnet

Let's fit two penalized regression models to the BRCA1 data,
one with v = 3 and the other with v = T7:

cvfit3 <- cv.ncvreg(X, y) # gam=3 is default
cvfit7? <- cv.ncvreg(X, y, gamma=7)
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Results: MCP
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CV Results: MCP
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ncvreg provides a useful summary function for fitted CV objects:

summary (cvfit3)
# MCP-penalized linear regression with n=536, p=17322
# At minimum cross-validation error (lambda=0.0647):

# _________________________________________________
# Nonzero coefficients: 23

# Cross-validation error (deviance): 0.23

# R-squared: 0.55

# Signal-to-noise ratio: 1.21

# Scale estimate (sigma): 0.479
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And the equivalent summary for v = T7:

summary (cvfit7)
# MCP-penalized linear regression with n=536, p=17322
# At minimum cross-validation error (lambda=0.0492):

# _________________________________________________
# Nonzero coefficients: 53

# Cross-validation error (deviance): 0.21

# R-squared: 0.59

# Signal-to-noise ratio: 1.42

# Scale estimate (sigma): 0.457
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RENMES

e For MCP with v = 7, the minimum error is CV = 0.21; very
close to, although slightly larger than the CV = 0.20 achieved
by the lasso

e However, the MCP model selects far fewer features (49
compared to 96 for the lasso)

e The MCP model with v = 3 selects an even more sparse
model (32 features), although with a higher CV error
($CV=0.24) and greater local convexity concerns
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Finally, let us fit a SCAD-penalized regression model to this data
(v =38):

cvfit_scad <- cv.ncvreg(X, y, gamma=8, penalty='SCAD')
summary (cvfit_scad)

# SCAD-penalized linear regression with n=536, p=17322
# At minimum cross-validation error (lambda=0.0478):

# _________________________________________________
# Nonzero coefficients: 79

# Cross-validation error (deviance): 0.20

# R-squared: 0.60

# Signal-to-noise ratio: 1.51

# Scale estimate (sigma): 0.449
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Results: SCAD (v = 8)

The SCAD results are more lasso-like than MCP is (as one would
expect since the penalties are more similar)
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This is just one example, but these results seen are fairly
representative, in my experience

The prediction performance (as estimated by cross-validation)
is typically similar between MCP/SCAD /lasso, but there can
be substantial differences in terms of the estimates themselves

The main advantage in practice of MCP (or SCAD) is the
ability to achieve that prediction performance using fewer
features

Finally, the results of SCAD are almost always in between
those of MCP and lasso
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WHO-ARI: MCP
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Let us also revisit the WHO study of acute respiratory illness,
which you have looked at a few times in your homework
assignments

Let us fit an MCP-penalized regression model to this data
using v = 6 and compare it to the fit of the lasso:

fold <- assign_fold(y, 10)

cvfit_mcp <- cv.ncvreg(XX, y, gam=6, fold=fold)

cvfit_las <- cv.ncvreg(XX, y, penalty="lasso",
fold=fold)

When making these kinds of comparisons, keep the CV fold
assignments the same, otherwise you risk mistaking the effect
of different folds for the effect of the penalty
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Results: CV

Lasso

MCP
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Results: Coefficient path

MCP Lasso

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)



Breast cancer gene express

Case studies WIRI-AR] ey

Summary: MCP

summary (cvfit_mcp)
# MCP-penalized linear regression with n=816, p=66
# At minimum cross-validation error (lambda=0.0324):

# _________________________________________________
# Nonzero coefficients: 26

# Cross-validation error (deviance): 1.21

# R-squared: 0.41

# Signal-to-noise ratio: 0.68

# Scale estimate (sigma): 1.099
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Summary: Lasso

summary (cvfit_las)
# lasso-penalized linear regression with n=816, p=66
# At minimum cross-validation error (lambda=0.0213):

# _________________________________________________
# Nonzero coefficients: 39

# Cross-validation error (deviance): 1.20

# R-squared: 0.41

# Signal-to-noise ratio: 0.69

# Scale estimate (sigma): 1.097
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