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Introduction

e Today we will discuss one final approach to inference in
high-dimensional regression models called the knockoff filter
o There are two approaches to the knockoff filter:
o In its simplest form, we can generate knockoffs without any
assumptions on X; however this approach only works if X is
full rank (Barber and Candes 2015)
o A later paper (Candeés et al. 2018) extended this idea to the
p > n case, although in order to do so, we need to make some
assumptions about X
e Both approaches are implemented in the R package knockoff
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Fixed design matrix

Step 1: Construct knockoffs

e The basic idea of the knockoff filter is that for each feature x;
in the original feature matrix, we construct a knockoff feature
X;

o We'll go into specifics on constructing knockoffs later; for
now, we specify the properties that a knockoff X; must have:

X'X=X"X
X[ X), = Xj X, forall k # j
%~;xj:1—sj where 0 < s; <1

e In other words, the knockoff matrix X differs from the original
matrix X, but has the same correlation structure and the
same correlation with the original features
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e With the knockoffs constructed, the next step is to fit a
(lasso) model to the augmented n x 2p design matrix [X X]

o At this point, we need some sort of test statistic that measures
whether the original feature is better than the knockoff

e There are actually a variety of statistics we could use here,
but in this lecture we'll focus on the point A along the lasso
path at which a feature enters the model, giving us a
2p-dimensional vector {Z1, ..., Z,, Zi,. .., Zp}

e Qur test statistic is then

Wj = max(Z;, Z;) - sign(Z; — Zj);

i.e., W; will be positive if the original feature is selected before
the knockoff, and negative if the knockoff is selected first
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Fixed design matrix

Step 3: Estimate false discovery rate

e Now, if we select features such that W; > ¢ for some
threshold ¢, we can use the knockoff features to estimate the
false discovery rate

e Specifically, our knockoff estimate of the FDR is:

_# W < -t}

FDR = : ,
#{j:W; >t}

with the understanding that FDR = 1 if the numerator is

larger than the denominator, or if the denominator is zero
e Typically, we would specify the desired FDR ¢ and then

choose t to be the smallest value satisfying Fﬁ(t) <gq
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Fixed design matrix Procedure
ting the knockoffs

heoretical properties

Power and {s;}

e So, how do we actually construct these knockoffs?

o As we will see, the knockoff filter is valid provided that the
knockoffs have the correlation structure outlined earlier; its
power, however, depends on {s;}

o For the greatest power, we want the knockoffs to be as
different from the original features as possible (i.e, we want
the {s;} terms to be as large as possible)
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Fixed design matrix Procedure
Col ting the knockoffs
Theoretical properties

Nullspace, n, and p

e Let N denote an n x p orthonormal matrix such that
NTX = 0 (in other words, Na lies within the column null
space of X; note that this can be constructed using the QR
decomposition)

¢ Note that the nullspace of X has dimension n — rank(X)

e Thus, to be able to create N with p columns, it is not enough
for X to be full rank; we also need n > p + rank(X), so
n > 2p in the full-rank case
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Fixed design matrix Procedure
Constructin
Theoretical properties

Constructing knockoffs under equal correlation

e So, let's say we have a full rank X with n > 2p and thus can
construct an orthonormal N with NTX =0
e Furthermore, suppose we require s; = s for all j and let

1C7C =2sI—s?57!, where & = 1XTX
e Proposition: The matrix
X =X(I-s27!)+NC

satisfies the requirements of a knockoff matrix
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Fixed design matrix

The non-full rank case

e What if X is not full rank?

e |t turns out that the maximum value for s is 2 times the
minimum eigenvalue of X; thus, s; = s for all j cannot work
in the case where X is not full rank

® In this case, we will have to set some of the s; = 0 (meaning
no power for those features) and try to maximize the rest as
best we can

e In the knockoff package, a semidefinite programming
approach is used to determine the values that minimize
>_;(1 = s;) subject to the constraints (method="'sdp'; the
earlier approach is method="'equi')

High dimensional data analysis BIOS 7240 Patrick Breheny 10 / 26



Fixed design matrix

The p <n < 2p case

e Now, what if X is full rank, but n < 2p?

o In this case, there is an interesting little data augmentation
trick that can be used, provided that o can be estimated
accurately

e To get our sample size up to 2p, we can generate 2p — n
additional rows of X that are simply all equal to 0 and 2p — n
additional entries for y that are drawn from a N(0, 5?)
distribution

o We now have a linear model with p features and 2p
observations; the new observations carry no information about
B, but are useful for generating knockoffs
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Fixed design matrix Procedure
Constructing the knockoffs
Theoretical properties

p < n < 2p data augmentation applied to example data
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Fixed design matrix 2 re
G cting the kno
Theoretical properties

FDR control

e So does this knockoff procedure actually control the FDR?
o Note quite; instead, Barber and Candés show that it controls
a modified version of the FDR:

<|NmS|>
S4q1) ="

where S is the set of features selected by the knockoff filter
o Alternatively, the knockoff filter controls the FDR if we add 1
to the numerator (i.e., to the number of knockoffs selected)
e The modifications have little effect if many features are
selected
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Fixed design matrix re
cting the knockoffs
Theore ical propertles

Coin flip lemma

o We won't go through the entire proof here, but just present a
sketch of the main ideas
e The critical property that knockoffs have is a “coin flipping
property”: for j € N, we have sign(WW;) ~ Bern(1/2)
e This coin flipping property derives from two exchangeability
results: B
o [X X]T[X X] is invariant to any exchange of original and
knockoff features
o The distribution of [X )NC]Ty is invariant to any exchange of
null original and knockoff features
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Fixed design matrix 2 Ire
g cting the knockoffs
ical properties

Sketch of proof

e With these lemmas in place, the FDR control proof follows
from the inequality

. #{j:B;=0and W; >t}
1+#{j:ﬁj:0and I/Vj<—t}7

FDR < q

the coin flipping property ensuring that the expected value of
this quantity is below ¢

e The argument can be extended to a random threshold T
through use of martingales and the optional stopping theorem
similar to our FDR proof at the beginning of the course
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Modeling the design matrix Concluding remarks

Modeling X

o An obvious shortcoming of the previous approach is that it
requires n > p

e Extending the idea to p > n situations requires us to treat X
as random and to model its distribution; Candes et al. refer to
these as “model-X knockoffs” or just “MX" knockoffs

e Note that this is an interesting philosophical shift: the classical
setup is to assume a very specific distribution for y but
assume as little as possible about X, whereas MX knockoffs
assume that we know everything about the distribution of X
but require no assumptions on the distribution of Y'|X
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Modeling the design matrix Concluding remarks

Knockoff properties in the random case

e Recall our exchangeability results from earlier; with these in
mind, we can define knockoff conditions in the case where X
is treated as a random matrix with [ID rows

e A knockoff matrix X satisfies
o The distribution of [X X] is invariant to any exchange of
original and knockoff features
o X LY|X
e Note that the second condition is guaranteed if X is
constructed without looking at y
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Modeling the design matrix Concluding remarks

Gaussian case

e There are special cases in which we actually know something
about the distribution of X; in general, however, we would
likely assume it follows a multivariate normal distribution

e The main challenge here is that now we must estimate ¥, a
p X p covariance matrix, or rather X!, the precision matrix

e We will (time permitting) discuss this problem a bit later in
the course; for now, although this is by no means trivial, let us
assume that we can estimate 3 well enough to assume that
we know X ~ N(0,X)
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Modeling the design matrix Concluding remarks

MX knockoffs in the Gaussian case

e In order to satisfy the~knockoff property, let us assume the
joint distribution [X X] ~ N(0, G) where

> -8
G:[E—S > 1

here S is a diagonal matrix with entries {s;}
® Now, we can draw a random X from the conditional
distribution X | X, which is normal with

E(X|X)=X-8S¥7'X
V(X|X) =28 -Sx7'S
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Modeling the design matrix Concluding remarks

Example data with modeled X
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Modeling the design matrix Concluding remarks

TCGA data

e | tried applying the MX knockoff approach to the TCGA data
using the knockoff package, but this crashed, presumably due
to the memory limitations of dealing with a 17,322 x 17,322
matrix

e | even tried running it on our HPC cluster, but this also
crashed

e However, it is worth noting that in their paper, Candés et
al. applied the MX knockoff filter to a problem with
p = 400,000 by taking advantage of a special correlation
structure in X
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Modeling the design matrix Concluding remarks

Remarks: Some advantages

e The knockoff filter also has some nice advantages

e In particular, none of its theory involves any asymptotics, or
anything special about the statistic W, or about the lasso,
which means:

o The theory holds exactly in finite dimensions

o We can use other statistics, §\uch as the lasso coefficient
difference: W; = |8;(A)| — |Bj+p(N)]

o Perhaps most appealing, we can apply this reasoning to all
kinds of other methods — other penalties of course, but also
much more ambitious problems: forward selection, random
forests, even deep learning
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Modeling the design matrix Concluding remarks

Remarks: Some drawbacks

e Result can differ quite a bit depending on the random X one
draws; it would seem desirable to aggregate or average these
results over the draws, although how exactly to do this is
unclear

e Furthermore, scaling the method to high dimensions is not
trivial

e Finally, knockoffs appear to be slightly less powerful than
some of the other approaches we have discussed

High dimensional data analysis BIOS 7240 Patrick Breheny



Gaussian mirrors

Gaussian mirrors

o A related idea, intended to remedy some of these issues with
the knockoff filter, is that of the Gaussian mirror (Xing et al.,
2023)

e The idea is that for each feature x;, we create a pair of
“mirror features™: xj =X; + ¢z and X; = X; — ¢z ,
where ¢; is a scalar and z; ~ N(0,I)

e The obvious advantages over knockoffs is that we're only

perturbing one variable at a time, so
o Easier to scale up to high dimensions with p > n
o No need to model the joint distribution of all p features
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Gaussian mirrors

Mirror statistic

e To carry out a test of Hy: 5; = 0, we first construct a new
feature matrix X7 that consists of X_; plus the mirror
features for x; and fit the model

o We then construct the mirror statistic:

M; = [ + 57| - [Bf - 55 |

e The first term represents signal while the second represents
noise; roughly speaking, in the first term the noise cancels out
while in the second term the signal cancels out

o This would then be repeated for all j
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Gaussian mirrors

FDR for Gaussian mirror

o In the interest of time, I'll skip the details, but it is possible to
choose c¢; such that the distribution of M; is symmetric about

zero when the null hypothesis is true
o This is relatively straightforward for OLS
o Much more complicated for lasso

e Similar to the knockoff filter, we estimate the FDR among
selected features to with M; > ¢ by calculating

—  #{j: M; <t}
FDR =
#{j: My >t}

again with the understanding that FDR = 1 if the
denominator is zero

High dimensional data analysis BIOS 7240 Patrick Breheny



