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Introduction

• Today we will discuss one final approach to inference in
high-dimensional regression models called the knockoff filter

• There are two approaches to the knockoff filter:
◦ In its simplest form, we can generate knockoffs without any

assumptions on X; however this approach only works if X is
full rank (Barber and Candès 2015)

◦ A later paper (Candès et al. 2018) extended this idea to the
p > n case, although in order to do so, we need to make some
assumptions about X

• Both approaches are implemented in the R package knockoff
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Step 1: Construct knockoffs

• The basic idea of the knockoff filter is that for each feature xj

in the original feature matrix, we construct a knockoff feature
x̃j

• We’ll go into specifics on constructing knockoffs later; for
now, we specify the properties that a knockoff x̃j must have:

X̃⊤X̃ = X⊤X
x̃⊤

j xk = x⊤
j xk for all k ̸= j

1
n x̃⊤

j xj = 1 − sj where 0 ≤ sj ≤ 1

• In other words, the knockoff matrix X̃ differs from the original
matrix X, but has the same correlation structure and the
same correlation with the original features
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Step 2: Calculate test statistics

• With the knockoffs constructed, the next step is to fit a
(lasso) model to the augmented n × 2p design matrix [X X̃]

• At this point, we need some sort of test statistic that measures
whether the original feature is better than the knockoff

• There are actually a variety of statistics we could use here,
but in this lecture we’ll focus on the point λ along the lasso
path at which a feature enters the model, giving us a
2p-dimensional vector {Z1, . . . , Zp, Z̃1, . . . , Z̃p}

• Our test statistic is then

Wj = max(Zj , Z̃j) · sign(Zj − Z̃j);

i.e., Wj will be positive if the original feature is selected before
the knockoff, and negative if the knockoff is selected first
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Step 3: Estimate false discovery rate

• Now, if we select features such that Wj ≥ t for some
threshold t, we can use the knockoff features to estimate the
false discovery rate

• Specifically, our knockoff estimate of the FDR is:

F̂DR = #{j : Wj ≤ −t}
#{j : Wj ≥ t}

,

with the understanding that F̂DR = 1 if the numerator is
larger than the denominator, or if the denominator is zero

• Typically, we would specify the desired FDR q and then
choose t to be the smallest value satisfying F̂DR(t) ≤ q
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Illustration: Augmented example data (n = 200, p = 60)
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Power and {sj}

• So, how do we actually construct these knockoffs?
• As we will see, the knockoff filter is valid provided that the

knockoffs have the correlation structure outlined earlier; its
power, however, depends on {sj}

• For the greatest power, we want the knockoffs to be as
different from the original features as possible (i.e, we want
the {sj} terms to be as large as possible)
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Nullspace, n, and p

• Let N denote an n × p orthonormal matrix such that
N⊤X = 0 (in other words, Nα lies within the column null
space of X; note that this can be constructed using the QR
decomposition)

• Note that the nullspace of X has dimension n − rank(X)
• Thus, to be able to create N with p columns, it is not enough

for X to be full rank; we also need n ≥ p + rank(X), so
n ≥ 2p in the full-rank case
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Constructing knockoffs under equal correlation

• So, let’s say we have a full rank X with n ≥ 2p and thus can
construct an orthonormal N with N⊤X = 0

• Furthermore, suppose we require sj = s for all j and let
1
nC⊤C = 2sI − s2Σ−1, where Σ = 1

nX⊤X
• Proposition: The matrix

X̃ = X(I − sΣ−1) + NC

satisfies the requirements of a knockoff matrix
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The non-full rank case

• What if X is not full rank?
• It turns out that the maximum value for s is 2 times the

minimum eigenvalue of Σ; thus, sj = s for all j cannot work
in the case where X is not full rank

• In this case, we will have to set some of the sj = 0 (meaning
no power for those features) and try to maximize the rest as
best we can

• In the knockoff package, a semidefinite programming
approach is used to determine the values that minimize∑

j(1 − sj) subject to the constraints (method='sdp'; the
earlier approach is method='equi')
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The p < n < 2p case

• Now, what if X is full rank, but n < 2p?
• In this case, there is an interesting little data augmentation

trick that can be used, provided that σ2 can be estimated
accurately

• To get our sample size up to 2p, we can generate 2p − n
additional rows of X that are simply all equal to 0 and 2p − n
additional entries for y that are drawn from a N(0, σ̂2)
distribution

• We now have a linear model with p features and 2p
observations; the new observations carry no information about
β, but are useful for generating knockoffs
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p < n < 2p data augmentation applied to example data
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FDR control

• So does this knockoff procedure actually control the FDR?
• Note quite; instead, Barber and Candès show that it controls

a modified version of the FDR:

E
(

|N ∩ Ŝ|
|Ŝ| + q−1

)
≤ q,

where Ŝ is the set of features selected by the knockoff filter
• Alternatively, the knockoff filter controls the FDR if we add 1

to the numerator (i.e., to the number of knockoffs selected)
• The modifications have little effect if many features are

selected
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Coin flip lemma

• We won’t go through the entire proof here, but just present a
sketch of the main ideas

• The critical property that knockoffs have is a “coin flipping
property”: for j ∈ N , we have sign(Wj) ⊥⊥∼ Bern(1/2)

• This coin flipping property derives from two exchangeability
results:

◦ [X X̃]⊤[X X̃] is invariant to any exchange of original and
knockoff features

◦ The distribution of [X X̃]⊤y is invariant to any exchange of
null original and knockoff features
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Sketch of proof

• With these lemmas in place, the FDR control proof follows
from the inequality

FDR ≤ q · #{j : βj = 0 and Wj > t}
1 + #{j : βj = 0 and Wj < −t}

;

the coin flipping property ensuring that the expected value of
this quantity is below q

• The argument can be extended to a random threshold T
through use of martingales and the optional stopping theorem
similar to our FDR proof at the beginning of the course
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Modeling X

• An obvious shortcoming of the previous approach is that it
requires n ≥ p

• Extending the idea to p > n situations requires us to treat X
as random and to model its distribution; Candès et al. refer to
these as “model-X knockoffs” or just “MX” knockoffs

• Note that this is an interesting philosophical shift: the classical
setup is to assume a very specific distribution for y but
assume as little as possible about X, whereas MX knockoffs
assume that we know everything about the distribution of X
but require no assumptions on the distribution of Y |X
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Knockoff properties in the random case

• Recall our exchangeability results from earlier; with these in
mind, we can define knockoff conditions in the case where X
is treated as a random matrix with IID rows

• A knockoff matrix X̃ satisfies
◦ The distribution of [X X̃] is invariant to any exchange of

original and knockoff features
◦ X̃ ⊥⊥ Y |X

• Note that the second condition is guaranteed if X̃ is
constructed without looking at y
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Gaussian case

• There are special cases in which we actually know something
about the distribution of X; in general, however, we would
likely assume it follows a multivariate normal distribution

• The main challenge here is that now we must estimate Σ, a
p × p covariance matrix, or rather Σ−1, the precision matrix

• We will (time permitting) discuss this problem a bit later in
the course; for now, although this is by no means trivial, let us
assume that we can estimate Σ well enough to assume that
we know X ∼ N(0, Σ)
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MX knockoffs in the Gaussian case

• In order to satisfy the knockoff property, let us assume the
joint distribution [X X̃] ∼ N(0, G) where

G =
[

Σ Σ − S
Σ − S Σ

]
;

here S is a diagonal matrix with entries {sj}
• Now, we can draw a random X̃ from the conditional

distribution X̃|X, which is normal with

E(X̃|X) = X − SΣ−1X

V(X̃|X) = 2S − SΣ−1S
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Example data with modeled X
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TCGA data

• I tried applying the MX knockoff approach to the TCGA data
using the knockoff package, but this crashed, presumably due
to the memory limitations of dealing with a 17, 322 × 17, 322
matrix

• I even tried running it on our HPC cluster, but this also
crashed

• However, it is worth noting that in their paper, Candès et
al. applied the MX knockoff filter to a problem with
p = 400, 000 by taking advantage of a special correlation
structure in X
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Remarks: Some advantages

• The knockoff filter also has some nice advantages
• In particular, none of its theory involves any asymptotics, or

anything special about the statistic W , or about the lasso,
which means:

◦ The theory holds exactly in finite dimensions
◦ We can use other statistics, such as the lasso coefficient

difference: Wj = |β̂j(λ)| − |β̂j+p(λ)|
◦ Perhaps most appealing, we can apply this reasoning to all

kinds of other methods – other penalties of course, but also
much more ambitious problems: forward selection, random
forests, even deep learning
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Remarks: Some drawbacks

• Result can differ quite a bit depending on the random X̃ one
draws; it would seem desirable to aggregate or average these
results over the draws, although how exactly to do this is
unclear

• Furthermore, scaling the method to high dimensions is not
trivial

• Finally, knockoffs appear to be slightly less powerful than
some of the other approaches we have discussed
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• A related idea, intended to remedy some of these issues with
the knockoff filter, is that of the Gaussian mirror (Xing et al.,
2023)

• The idea is that for each feature xj , we create a pair of
“mirror features”: x+

j = xj + cjzj and x−
j = xj − cjzj ,

where cj is a scalar and zj ∼ N(0, I)
• The obvious advantages over knockoffs is that we’re only

perturbing one variable at a time, so
◦ Easier to scale up to high dimensions with p > n
◦ No need to model the joint distribution of all p features
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• To carry out a test of H0 : β∗
j = 0, we first construct a new

feature matrix Xj that consists of X−j plus the mirror
features for xj and fit the model

• We then construct the mirror statistic:

Mj =
∣∣∣β̂+

j + β̂−
j

∣∣∣− ∣∣∣β̂+
j − β̂−

j

∣∣∣
• The first term represents signal while the second represents

noise; roughly speaking, in the first term the noise cancels out
while in the second term the signal cancels out

• This would then be repeated for all j
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FDR for Gaussian mirror

• In the interest of time, I’ll skip the details, but it is possible to
choose cj such that the distribution of Mj is symmetric about
zero when the null hypothesis is true

◦ This is relatively straightforward for OLS
◦ Much more complicated for lasso

• Similar to the knockoff filter, we estimate the FDR among
selected features to with Mj ≥ t by calculating

F̂DR = #{j : Mj ≤ −t}
#{j : Mj ≥ t}

,

again with the understanding that F̂DR = 1 if the
denominator is zero
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