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Introduction

Introduction

e The general paradigm for penalized regression is

Q(BIX,y) = L(BIX,y) + Px(B)

e So far, we have discussed a variety of choices for Py(83), but
L(B|X,y) has always been the least squares loss function
(i.e., linear regression)

e In our next two lectures, we'll explore some different types of
loss functions in order to see how penalized regression
methods extend to other types of data
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Introduction

Logistic regression

e One of the most common, perhaps even more common than
linear regression itself, are studies in which the outcome is
binary

e Such studies are particularly common in medical research,
where it is common to consider presence/absence of a disease
as the outcome

e In this setting, it is natural to model the outcome using a
binomial distribution, allowing m; = P(Y;) to depend on the
features according to

T

- =x; B;
1

1
og1

this is known as the logistic regression model
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Introduction

Logistic regression objective function

e As with linear regression, maximum likelihood estimation of 8
will be problematic if the number of features is large, making
penalized likelihood estimation desirable

e Thus, we will estimate 8 by minimizing the objective function
1 n
- > Ayilogmi + (1 —yi)log (1 —m)} + PA(B),
i=1

where X and 8 are included in the likelihood implicitly, as &
is a function of X3
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Introduction

Similarities and differences

e For the most part, everything we have talked about so far this
semester with respect to linear regression carries over to
logistic regression: ridge, lasso, MCP, elastic net, etc.,
penalties have similar effects on regression coefficients as we
have seen

e However, two differences are worth discussing:
o We need new algorithms for model fitting
o We need new measures of predictive accuracy
e Inference concerning 3, of course, would also be different,
although this is beyond the scope of a single lecture; some
approaches (sample splitting, knockoffs) are straightforward to
extend while others (selective inference) are not
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Algorithms

Implications for nonconvex penalties

Model fitting

Logistic regression: Notation, intercept

Patrick Breheny

First, let's discuss algorithms for minimizing Q(8|X,y) in the
logistic regression case

We begin by noting that for logistic regression, it is not
possible to eliminate the need for an intercept by centering
the response variable

Thus, in the derivations that follow, y will denote the original
vector of 0-1 responses

The design matrix X is standardized as before, but now
contains an unpenalized column of 1's for the intercept, with
corresponding coefficient 5y
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Algorithms
Implications for nonconvex penalties

Model fitting

Iteratively reweighted least squares algorithm

Patrick Breheny

Like unpenalized logistic regression itself, algorithms for
penalized logistic regression employ Taylor series expansions
to produce quadratic approximations to the loss function,
thereby allowing us to use our previously derived solutions for
linear regression

This two-step approach is known, generally speaking, as the
iteratively reweighted least squares (IRLS) algorithm:

(1) Approximate the loss function based on B
(2) Solve for B+ the value that minimizes the approximated
loss function

These two steps are alternated until convergence
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Algorithms

Implications for nonconvex penalties

Model fitting

Taylor series expansion

Approximating the loss function via Taylor series expansion, we
have

LIBIX.y) ~ 5 (3~ XB) W(5 ~ XB)

where

e ¥, the working response, is defined by
y=XBM + W (y —m)

e W is a diagonal matrix of weights, with elements
w; = 7Ti(1 — 7Ti)

o 7 is evaluated at 8"
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Algorithms

Implications for nonconvex penalties

Model fitting

Generalized linear models

e We are focusing today on logistic regression, but the same
approach can be applied to fit penalized versions of any
generalized linear model (GLM)

e To do so, one simply has to replace ¥ and W with the
appropriate expressions for the corresponding response
distribution and link function used in the model

e For example, both glmnet and ncvreg have options for fitting
Poisson regression models (family="poisson") using the same
technique we describe here for logistic regression
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Algorithms

Implications for nonconvex penalties

Model fitting

Coordinate descent

e Following the quadratic approximation, the objective function
closely resembles the objective we're used to from linear
regression, but now with observation weights {w; }

e We can still employ coordinate descent, but the presence of
these weights changes the form of the updates

o Let
v = n_liTij
r=Wl(y—m)
X, W(y — X_;8")

(m)
x; Wr + vjﬁjm
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Model fitting Aleidims

Coordinate-wise updating

e Now, the coordinate-descent update for lasso is

5, o S

Uj
e For the elastic net,

S(zj|A1)
fi v + A2

e For MCP,

S(z51N)
vj—1/y
Zi if |z;] > vvA

vj

if 2] < wjvA
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Algorithms
Implications for nonconvex penalties

Model fitting

RENMES

¢ Note that the coordinate descent portion (2) of the algorithm
must also involve the updating of the intercept term:
>
Bo ¢ =
Uj

e Speaking of step (2), we typically do not iterate until

. . 5(m+1 .
convergence in order to obtain B( ), but simply make one

pass of coordinate updates, then re-approximate

e As is the case for the traditional IRLS algorithm for GLMs,
this algorithm is not guaranteed to converge

e Typically, however, this is not a problem in practice, at least
not for pathwise approaches, as the “warm starts”
phenomenon provides protection against bad initial values
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Model

Patrick Breheny

Algorithms

Implications for nonconvex penalties

Model fitting

saturation

One exception to this remark is that convergence does tend to
be a problem with saturated models

To protect against this, the glmnet and ncvreg packages will
terminate the pathwise algorithm early if saturation
(R? > 0.99) is detected

Another numerical issue worth mentioning is that weights are
typically capped at a minimum value € to prevent fitted
probabilities of 0 or 1, which also tends to happen as models
become saturated
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Algorithms

Model fitti . .
fLHing Implications for nonconvex penalties

Reweighting and ~

e Before moving on, it is worth considering how the reweighting
affects nonconvex penalties such as MCP and SCAD with
respect to convexity and the choice of

e In linear regression, the scaling factor by which solutions are
adjusted toward their unpenalized solution is a constant
(1 — 1/~ for MCP) for all values of A and for each covariate

e Furthermore, for standardized covariates, this constant has a
universal interpretation for all linear regression problems,
meaning that defaults such as v = 3 can be used and will be
universally reasonable (though not necessarily optimal, of
course)
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Algorithms

Model fitti . .
fLHing Implications for nonconvex penalties

Reweighting and  (cont'd)

* In logistic regression, however, this scaling factor (v; — 1/~ for
MCP) is different for each data set and for each feature

e This makes choosing an appropriate value for « considerably
more difficult and robs the parameter of a consistent
interpretation

e For example, suppose we attempt to use v = 3; for logistic
regression, w; cannot exceed 0.25, v cannot exceed 1/v;, and
Q(Bj1B_;) is no longer convex and does not have a unique
minimum
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Algorithms

Model fitti . .
fLHing Implications for nonconvex penalties

Adaptive rescaling

e To resolve these difficulties, ncvreg takes an approach known
as adaptive rescaling, which replaces py ~(|3;]) by px~(|v;5;])

e The consequence is that the updating steps become simple
extensions of the linear regression updating steps:

B w (MCP)
J

B+ w (SCAD),
J

where F' and Ty are the firm and SCAD thresholding operators

e The purpose of this is to give v a consistent meaning again
and allow simple reasonable defaults such as v = 3 to have the
same meaning in other GLMs as they do in linear regression
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Measures of predictive accuracy

Leukemia data (refresher)

For the second half of this lecture, I'd like to (a) discuss
various measures of predictive accuracy (b) demonstrate how
to fit penalized logistic regression models with glmnet and
ncvreg and (c) illustrate using a real data set

For our case study data set, we will use the Leukemia data
that we previously analyzed back at the beginning of the
course using a multiple testing approach

To refresh your memory, the data involved expression levels
for 7,129 genes and 72 patients, of whom 47 patients had
acute lymphoblastic leukemia (ALL) and the other 25 patients
had acute myeloid leukemia (AML)
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Measures of predictive accuracy

Deviance

e The most natural measure of predictive accuracy is to simply
use the loss function (i.e., the log-likelihood); this is
equivalent to the idea of deviance in GLM theory

e Specifically, let

&2 = —2{y;log 7y + (1 — yi) log (1 — 7))},

where 7(;) denotes the predicted value of m; based on the
cross-validation fold from which observation 7 was excluded

e Then D =", d? is known as the deviance; the factor of 2 is
so that the difference in deviance between two nested models
will follow a y? distribution in classical likelihood theory, but
is essentially arbitrary for our purposes
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Measures of predictive accuracy

Deviance for the Leukemia data (lasso)

cv.glmnet(x, y, family = 'binomial')

Variables selected
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Measures of predictive accuracy

Deviance for the Leukemia data (MCP)

cv.ncvreg(x, y, family = 'binomial', gamma = 4)

Variables selected
011111222234 45%5050586 67
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Measures of predictive accuracy

As with linear regression, it is often more interpretable to look
at the fraction of RSS/deviance explained, rather than the
total (although of course the two are equivalent in terms of
choosing an optimal value of \)

There are multiple ways of doing this; all revolve around the
difference between AD()), the difference between Dy, the
deviance of the null model, and D(\), the (cross-validated)
deviance at a given value of A, and

Patrick Breheny

University of lowa High dimensional data analysis (BIOS 7240)



Measures of predictive accuracy

Cox-Snell R?

e For linear regression,

RSS
2 _1_ 1
R RSSq
or in terms of deviance,
RSS;
AD =nl
98 RSS,

e This suggests
R? =1 —exp{AD(\)/n};

known as the Cox-Snell R?, this is what ncvreg returns
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Measures of predictive accuracy

R? for the Leukemia data (lasso)

Variables selected
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Measures of predictive accuracy

R? for the Leukemia data (MCP)

Variables selected
o1t1111222234 45555866 7
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Measures of predictive accuracy

Misclassification error

e A more black-and-white measure of predictive accuracy is the
ability of the model to predict the outcome (here, leukemia
type) correctly, in the sense that ;) > 0.5 implies a
prediction that ¥; =1

e This is generally referred to as the misclassification error of
the model

e The advantage of misclassification error is ease of
interpretation: everyone know what it means to say that the
model got 78% of its predictions correct

e The disadvantage is that it is less stable and well-behaved
than the deviance; small changes in A can lead to large
changes in the misclassification error as 7 ;) moves from one
side of 0.5 to the other
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Measures of predictive accuracy

Standard errors

e We've been showing standard errors, but | have not yet
discussed how they are estimated

e For deviance and R?, glmnet and ncvreg estimate the
standard error of d? through the simple formula
SE = SD(d?)/+/n

® glmnet uses the same approach for misclassification error,
though ncvreg calculates exact (Clopper-Pearson) confidence
intervals based on the observed number of misclassifications
and trials
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Measures of predictive accuracy

Misclassification error (lasso)

Variables selected
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Measures of predictive accuracy

Misclassification error (MCP)

Variables selected
o1t1111222234 45555866 7
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Measures of predictive accuracy

PR and ROC curves

® The preceding plots used ;) > 0.5 for prediction, which is
not always the most relevant cutoff #; > ¢

e Rather than assign a single, fixed cutoff, another approach is
to consider the prediction accuracy across a range of cutoffs —
this will produce a curve as the changing cutoff changes the
number of false positives and false negatives

e The two most common curves are

o ROC curves: Plotting sensitivity vs 1 - specificity
o Precision-recall (PR) curves: Plotting precision (positive
predictive value) against recall (sensitivity)
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Measures of predictive accuracy

PR and ROC curves for Golub data (lasso)
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Measures of predictive accuracy

Accessing cross-validated predictions

e Again, it is very important that you use the cross-validated
linear predictors when calculating these curves

o As with all measures of predictive accuracy, AUC will be
substantially inflated if you use the full-data linear predictors

cv.glmnet(x, y, family 'binomial’,
type.measure = 'auc')
cv.ncvreg(x, y, family 'binomial', returnY = TRUE)
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