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Introduction

Our previous lecture introduced the idea of grouped variables
and the idea of selecting important groups of variables, rather
than individual variables

However, there are often situations where we might be
interested in selection at both the individual and group levels,
or bi-level selection

Our goal for today is to introduce two approaches for
achieving bi-level selection, discuss some specific penalties,
and apply the approach to a real data set
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Introduction (cont’d)

For example, last time we analyzed a data set in which
genetic differences (SNPs) were grouped by the gene that
they belong to

Grouping made sense here: if the gene is unimportant to the
response, we don't want to select any SNPs from it

However, selecting individual SNPs also makes sense: just
because a gene is important to the response doesn't mean
that every single SNP is important

This could be thought of as a situation in which the grouping
is “soft”: if feature A is in a group with feature B that we
know is important, this means that feature A is more likely to
be important, but this is not definite
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Additive penalties

Sparse group lasso

e One simple way of achieving bi-level selection is to include
both a lasso and group lasso penalty:

Q(BIX,y) = L(BIX,y) + A1 2 D 1Bkl + A2 D185
ik j

this penalty is known as the sparse group lasso (SGL)

e Similar to the elastic net, it is common to reparameterize this
penalty using A and «, with A\; = @) and Ay = (1 — @)\ so
that a = 1 is equivalent to the lasso, a = 0 is equivalent to
the group lasso, and o = 0.5 is a 50-50 mix
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Additive penalties

Derivative of the penalty

e To get some insight into how the penalty works, let's consider
the partial derivative of the penalty with respect to |3,
which | will denote in today’s lecture as Ajy:

By
No  ifB;=0

o |n other words, if all the other elements of group j are zero,
Bj, receives the full penalty of A\; + Ao

e If, however, 3j;, is located in a group with other important
variables (i.e., with large coefficients), it receives a lesser
penalty A1 + e)g, where € € [0, 1)
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Additive penalties

Computing

~

In terms of developing an algorithm to solve for 3,
unfortunately there is no longer a closed-form solution at the
individual or group level

There would be, if we could assume %X]TX] =TI as we did
with the group lasso

Unfortunately, we can no longer apply the orthonormalization
trick from the previous lecture — if we were to compute the
orthonormalized group X, its columns would no longer
correspond to the original columns of X

To put it a different way, we could achieve bi-level selection
on the orthonormalized scale, but this would be lost once we
transformed back to the original scale
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Additive penalties

Computing (cont'd)

e One option would be to use a local linear approximation to
the penalty, where we would end up with expressions like the
one we just derived

e A different approach (used by the SGL package, which we will
be using today) is to employ an idea known as generalized
gradient descent, in which one calculates a direction
(gradient) along which we will update 3;, then applies a
soft-thresholding operator along that gradient

® In a sense, this is like calculating an orthonormal
approximation to %X?X] and then using its closed form in
the orthonormal case to carry out group-wise updates
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Additive penalties

Other options; convexity

e The sparse group lasso adds the lasso and group lasso
penalties

e In principle, one could imagine mixing other penalties (e.g.,
MCP + group lasso); | recently reviewed a manuscript
studying such combinations, although there is no publicly
available software yet

e One attractive feature of the SGL is the fact that, since both
lasso and group lasso are convex penalties, the resulting
objective function is convex
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Additive penalties

Example

e To see an example of SGL in action, let's simulate some data
with n = 50, x;,¢ ~ N(0,1) and
o Coefficients in 10 groups of three (p = 30, J = 10)
o One group with 3; = (1,-0.5,0), another group with
B; = (=1,0.5,0), and the other eight groups with 8, = 0
o We'll fit SGL models over « = 0,0.1,0.2,...,1 and look at
how the coefficient paths change
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Additive penalties

Example: SGL paths
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General framework

Hierarchical penalties GEL

Hierarchical framework

e An alternative approach is to apply penalties in a hierarchical
manner, as opposed to an additive one

e For example, suppose we have an outer penalty, po, applied
at the group level, and an inner penalty, p;, applied at the
individual feature level; the objective function would be

QBIX,y) = LBIX,y) +>_ro{ > pr(Bi])},
J k

where po and p; would also depend on various
tuning/regularization parameters

e For example, group lasso could be thought of in this
framework, with po(6) = A; 16]/% and p;(B) = B2

Patrick Breheny University of lowa High dimensional data analysis (BIOS 7240)



General framework

Hierarchical penalties GEL

Derivative; insight

e Again, to gain insight into the nature of penalties of this type,
let us consider the derivative with respect to (the absolute
value of) an individual coefficient:

Aji = o ( 3 (18] (18jx])
k
= Ao

e In other words, thinking of A; as the penalty experienced by a
coefficient in the ungrouped case, this rate of penalization is
multiplied by a term Ao that depends on the size of the group
that the coefficient belongs to
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A . . General framework
Hierarchical penalties GEL

RENMES

o In the hierarchical framework, then, group and individual
penalties interact in a multiplicative manner, as opposed to an
additive manner in a penalties like SGL

e Note that, for this to make sense, the outer penalty po must
be nonconvex — i.e., its rate of penalization must be
decreasing as the size of the group increases
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General framework

Hierarchical penalties GEL

Group exponential lasso

e As with additive penalties, one could imagine many possible
combinations here; | will briefly discuss one called the group
exponential lasso (GEL)

o Here, the inner penalty is the the lasso penalty,
p1(B;) = ||B;]l1 and the outer penalty is the exponential

penalty
A2 70
poler ) = {1-exp (-1}
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General framework

Hierarchical penalties GEL

Derivative of the GEL penalty

For the GEL penalty,
-
Aje = resp{=S181h |

® Thus, for a coefficient in a group with 3; = 0, the penalty is
A, just as it is for the ordinary lasso

* When 3, # 0, however, Aj; < A, with the rate of
penalization decreasing exponentially as ||ﬂj||1 increases

e Note that in this approach, the rate of penalization is the
same for all features in a given group, so we could drop the
subscript k
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Hierarchical penalties

Computing

e Computing can be carried out in a relatively straightforward
manner using the idea of local linear approximation that we
discussed in earlier lectures

e To briefly address the ideas of convexity and convergence:

o Because the penalty function is strictly nonconvex in |3|, the
algorithm is guaranteed to converge by theory underlying MM
algorithms

o However, as with all iterative algorithms applied to nonconvex
problems, we cannot guarantee convergence to a global
minimum

e Here, 7 is the parameter that controls the convexity of the
objective function, with larger values of 7 leading to
increasingly nonconvex objectives
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Hierarchical penalties

Example: GEL paths (same data as earlier)
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Macular degeneration

. GAW
Case studies

Macular degeneration case study

e To illustrate how SGL and GEL work, and how they compare
to lasso/group lasso, we will revisit our example from last
time involving the case/control study of macular degeneration

e Here, n = 800, p =497, J = 30, and the outcome is binary;
for the sake of simplicity I'll focus only on the “grouping by
gene” analysis
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Patrick Breheny

Macular degeneration
GAW

Case studies

An implementation of the SGL penalty is available from the R
package SGL

Its syntax is a little unconventional, and the package is not as
well developed as some of the others (e.g., no plot function),
but one can fit SGL models via:

list(x = x, y =y) |>
cvSGL(index = gene, type = 'logit', alpha = 0.5)

note that SGL requires integer-indexing of genes
The GEL penalty is available in grpreg; we have seen its
syntax previously:

cv.grpreg(x, y, group = gene,
family = 'binomial ', penalty = 'gel')
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Macular degeneration

Case studies

Results: R?2
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Macular degeneration

GAW
Case studies .

RENMES

In this example, neither SGL or GEL results in better predictions
than the lasso or group lasso, although GEL does provide a much
more sparse solution:

Method R? Genes Variants
Lasso 0.06 30 32
Group lasso  0.08 27 658
GEL 0.04 6 11
SGL 0.04 30 231
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Macular degeneration

Case studies GA

GAW 2010

e As a second case study, let’s look at data from the 2010
Genetic Analysis Workshop (GAW)

e The data set contains real genetic data from 697 individuals
and 24,487 genetic variants, grouped into 3205 genes

e Two hundred independent sets of responses were simulated by
the organizers of the workshop according to a plausible
genetic model of variant-disease association
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Macular degeneration

Case studies GA

Results: Variant (feature) selection

Each method was allowed to select 39 variants (the true number of
causal variants):

Number of Causal variants

genes selected selected
Univariate 30.1 3.9
Lasso 35.5 4.3
MCP 36.7 3.3
SGL 23.6 5.1
Composite 36.0 3.9
GEL 6.3 11.3
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Macular degeneration

Case studies GA

Results: Gene (group) selection

Alternatively, we can allow each method to select 9 genes (the true
number of genes with causal variants):

Number of Causal genes

variants selected selected
Collapse 146.5 1.3
Multivariate 98.8 14
Group lasso 9.4 0.1
SGL 14.9 0.4
Composite 10.9 15
GEL 454 1.6
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